Practical Salinity (SP), PSS-78

gsw_SP_from_C gsw_C_from_SP gsw_SP_from_R gsw_R_from_SP gsw_SP_salinometer gsw_SP_from_SK Practical Salinity from conductivity, C (incl. for SP < 2) conductivity, C, from Practical Salinity (incl. for SP < 2) Practical Salinity from conductivity ratio, R (incl. for SP < 2) conductivity ratio, R, from Practical Salinity (incl. for SP < 2) Practical Salinity from a laboratory salinometer (incl. for SP < 2) Practical Salinity from Knudsen Salinity

Absolute Salinity (SA), Preformed Salinity (Sstar) and Conservative Temperature (CT)

gsw_SA_from_SP gsw_Sstar_from_SP gsw_CT_from_t Absolute Salinity from Practical Salinity Preformed Salinity from Practical Salinity

Conservative Temperature from in-situ temperature

Absolute Salinity – Conservative Temperature plotting function

gsw_SA_CT_plot

function to plot Absolute Salinity – Conservative Temperature profiles on the SA-CT diagram, including the freezing line and selected potential density contours

other conversions between temperatures, salinities, entropy, pressure and height

gsw_deltaSA_from_SP gsw_SA_Sstar_from_SP gsw_SR_from_SP gsw_SP_from_SR gsw_SP_from_SA gsw_Sstar_from_SA gsw_SA_from_Sstar gsw_SP_from_Sstar gsw_pt_from_CT gsw_t_from_CT gsw_CT_from_pt

gsw_pot_enthalpy_from_pt
gsw_pt from t

gsw_pt0_from_t gsw_t_from_pt0

gsw_p_from_z

gsw_t90_from_t48 gsw_t90_from_t68 gsw_z_from_p

gsw_z_from_depth gsw_depth_from_z gsw_Abs_Pressure_from_p gsw_p_from_Abs_Pressure gsw_entropy_from_CT

gsw_p_ironi_Abs_Fress gsw_entropy_from_CT gsw_CT_from_entropy gsw_entropy_from_pt gsw_pt_from_entropy gsw_entropy_from_t gsw_t_from_entropy

gsw_adiabatic_lapse_rate_from_CT gsw_adiabatic_lapse_rate_from_t gsw_molality_from_SA

gsw_molality_from_SA gsw_ionic_strength_from_SA Absolute Salinity Anomaly from Practical Salinity

Absolute Salinity & Preformed Salinity from Practical Salinity

Reference Salinity from Practical Salinity Practical Salinity from Reference Salinity Practical Salinity from Absolute Salinity Preformed Salinity from Absolute Salinity Absolute Salinity from Preformed Salinity Practical Salinity from Preformed Salinity

potential temperature from Conservative Temperature in-situ temperature from Conservative Temperature Conservative Temperature from potential temperature

potential enthalpy from potential temperature

potential temperature

potential temperature with reference pressure of 0 dbar

in-situ temperature from potential temperature with p_ref of 0 dbar

ITS-90 temperature from IPTS-48 temperature ITS-90 temperature from IPTS-68 temperature

height from pressure pressure from height height from depth depth from height

Absolute Pressure, P, from sea pressure, p sea pressure, p, from Absolute Pressure, P entropy from Conservative Temperature Conservative Temperature from entropy entropy from potential temperature potential temperature from entropy entropy from in-situ temperature in-situ temperature from entropy

adiabatic lapse rate from Conservative Temperature adiabatic lapse rate from in-situ temperature

molality of seawater ionic strength of seawater

specific volume, density and enthalpy

gsw_specvol gsw_alpha gsw_beta

gsw_alpha_on_beta gsw_specvol_alpha_beta gsw_specvol_first_derivatives gsw_specvol_second_derivatives

gsw_specvol_first_derivatives_wrt_enthalpy gsw specvol second derivatives wrt enthalpy

gsw_specvol_anom

gsw_specvol_anom_standard

gsw_rho

gsw_rho_alpha_beta gsw_rho_first_derivatives gsw_rho_second_derivatives

gsw_rho_first_derivatives_wrt_enthalpy gsw_rho_second_derivatives_wrt_enthalpy

gsw_sigma0
gsw_sigma1
gsw_sigma2
gsw_sigma3
gsw_sigma4
gsw_cabbeling
gsw_thermobaric
gsw_enthalpy
gsw_enthalpy_diff
gsw_dynamic_enthalpy
gsw_enthalpy_first_derivatives

gsw_enthalpy_second_derivatives gsw_sound_speed gsw_kappa

gsw_internal_energy gsw_internal_energy_first_derivatives gsw_internal_energy_second_derivatives

gsw_CT_from_enthalpy gsw_SA_from_rho gsw_CT_from_rho gsw_CT maxdensity specific volume

thermal expansion coefficient with respect to CT saline contraction coefficient at constant CT

alpha divided by beta

specific volume, thermal expansion and saline contraction coefficients

first derivatives of specific volume second derivatives of specific volume

first derivatives of specific volume with respect to enthalpy second derivatives of specific volume with respect to enthalpy

specific volume anomaly

specific volume anomaly realtive to SSO & 0°C

in-situ density and potential density

in-situ density, thermal expansion and saline contraction coefficients

first derivatives of density second derivatives of density

first derivatives of density with respect to enthalpy second derivatives of density with respect to enthalpy

sigma0 with reference pressure of 0 dbar sigma1 with reference pressure of 1000 dbar sigma2 with reference pressure of 2000 dbar sigma3 with reference pressure of 3000 dbar sigma4 with reference pressure of 4000 dbar

cabbeling coefficient thermobaric coefficient

enthalpy

difference of enthalpy between two pressures

dynamic enthalpy

first derivatives of enthalpy second derivatives of enthalpy

sound speed

isentropic compressibility

internal energy

first derivatives of internal energy second derivatives of internal energy Conservative Temperature from enthalpy

Absolute Salinity from density

Conservative Temperature from density

Conservative Temperature of maximum density of seawater

vertical stability and interpolation

gsw_Turner_Rsubrho gsw_Nsquared gsw_Nsquared_min gsw_stabilise_SA_const_t gsw_stabilise_SA_CT gsw_mlp gsw_Nsquared_lowerlimit gsw_SA_CT_interp gsw_IPV_vs_fNsquared_ratio Turner angle & Rsubrho buoyancy (Brunt-Väisäla) frequency squared (N²) minimum buoyancy frequency squared (N²) minimumly adjust SA to produce a stable water column, keeping in-situ temperature constant minimally adjusts SA & CT to produce a stable water column mixed-layer pressure specified profile of minimum buoyancy frequency squared interpolates SA & CT to defined pressures ratio of isopycnal potential vorticity to f times N²

geostrophic streamfunctions, acoustic travel time and geostrophic velocity

gsw_geo_strf_dyn_height gsw_geo_strf_dyn_height_pc gsw_geo_strf_isopycnal gsw_geo_strf_isopycnal_pc gsw_geo_strf_Cunningham gsw_geo_strf_Montgomery gsw_geo_strf_Pisht gsw_geo_strf_Pish gsw_travel_time gsw_geostrophic_velocity dynamic height anomaly dynamic height anomaly for piecewise constant profiles approximate isopycnal geostrophic streamfunction approximate isopycnal geostrophic streamfunction for piecewise constant profiles Cunningham geostrophic streamfunction Montgomery geostrophic streamfunction dynamic height anomaly divided by 9.7963 m s⁻² pressure integrated steric height acoustic travel time geostrophic velocity

isobaric evaporation enthalpy

gsw_latentheat_evap_CT

gsw_latentheat_evap_t

latent heat of evaporation of water from seawater (isobaric evaporation enthalpy) with CT as input temperature latent heat of evaporation of water from seawater (isobaric evaporation enthalpy) with in-situ temperature, t, as input

seawater and ice properties at freezing temperatures

gsw_CT_freezing gsw_CT_freezing_poly gsw_t_freezing gsw_t_freezing_poly gsw_pot_enthalpy_ice_freezing gsw_pot_enthalpy_ice_freezing_poly gsw SA freezing from CT gsw SA freezing from CT poly gsw_SA_freezing_from_t gsw SA freezing from t poly asw pressure freezina CT gsw_CT_freezing_first_derivatives gsw_CT_freezing_first_derivatives_poly asw t freezina first derivatives gsw_t_freezing_first_derivatives_poly gsw_pot_enthalpy_ice_freezing_first_derivatives gsw_pot_enthalpy_ice_freezing_first_derivatives_poly gsw latentheat melting

Conservative Temperature freezing temp of seawater Conservative Temperature freezing temp of seawater (poly) in-situ freezing temperature of seawater in-situ freezing temperature of seawater (poly) potential enthalpy of ice at which seawater freezes potential enthalpy of ice at which seawater freezes (poly) SA of seawater at the freezing temp (for given CT) SA of seawater at the freezing temp (for given CT) (poly) SA of seawater at the freezing temp (for given t) SA of seawater at the freezing temp (for given t) (poly) pressure of seawater at the freezing temp (for given CT) first derivatives of CT freezing temp of seawater first derivatives of CT freezing temp of seawater (poly) first derivatives of in-situ freezing temp of seawater first derivatives of in-situ freezing temp of seawater (poly) first derivatives of potential enthalpy of ice at freezing first derivatives of potential enthalpy of ice at freezing (poly) latent heat of melting of ice into seawater

thermodynamic interaction between ice and seawater

gsw_melting_ice_SA_CT_ratio gsw_melting_ice_SA_CT_ratio_poly gsw_melting_ice_equilibrium_SA_CT_ratio gsw_melting_ice_equilibrium_SA_CT_ratio_poly gsw_ice_fraction_to_freeze_seawater gsw_melting_ice_into_seawater gsw_frazil_ratios_adiabatic gsw_frazil_ratios_adiabatic_poly gsw_frazil_properties gsw_frazil_properties_potential gsw_frazil_properties_potential SA to CT ratio when ice melts into seawater
SA to CT ratio when ice melts into seawater (poly)
SA to CT ratio when ice melts, near equilibrium
SA to CT ratio when ice melts, near equilibrium (poly)
ice mass fraction to freeze seawater
SA and CT when ice melts in seawater
ratios of SA, CT and P changes during frazil ice formation
ratios of SA, CT and P changes during frazil ice formation (poly)
SA, CT & ice mass fraction from bulk SA & bulk enthalpy
SA, CT & ice fraction from bulk SA & bulk potential enthalpy
(poly)

thermodynamic interaction between sea ice and seawater

gsw_melting_seaice_SA_CT_ratio gsw_melting_seaice_SA_CT_ratio_poly gsw_melting_seaice_equilibrium_SA_CT_ratio gsw_melting_seaice_equilibrium_SA_CT_ratio_poly gsw_seaice_fraction_to_freeze_seawater gsw_melting_seaice_into_seawater SA to CT ratio when sea ice melts into seawater
SA to CT ratio when sea ice melts into seawater (poly)
SA to CT ratio when sea ice melts, near equilibrium
SA to CT ratio when sea ice melts, near equilibrium (poly)
sea ice mass fraction to freeze seawater
SA and CT when sea ice melts into seawater

thermodynamic properties of ice Ih

asw specvol ice gsw_alpha_wrt_t_ice gsw_rho_ice asw pressure coefficient ice gsw_sound_speed_ice gsw_kappa_ice gsw kappa const t ice gsw_internal_energy_ice gsw_enthalpy_ice gsw_entropy_ice gsw_cp_ice gsw chem potential water ice gsw Helmholtz energy ice gsw_adiabatic_lapse_rate_ice gsw pt0 from t ice gsw_pt_from_t_ice gsw_t_from_pt0_ice gsw t from rho ice gsw_pot_enthalpy_from_pt_ice gsw pt from pot enthalpy ice gsw_pot_enthalpy_from_pt_ice_poly gsw_pt_from_pot_enthalpy_ice_poly gsw pot enthalpy from specvol ice gsw_specvol_from_pot_enthalpy_ice gsw_pot_enthalpy_from_specvol_ice_poly gsw specvol from pot enthalpy ice poly

specific volume of ice thermal expansion coefficient of ice with respect to in-situ temp in-situ density of ice pressure coefficient of ice sound speed of ice (compression waves) isentropic compressibility of ice isothermal compressibility of ice internal energy of ice enthalpy of ice entropy of ice isobaric heat capacity of ice chemical potential of water in ice Helmholtz energy of ice adiabatic lapse rate of ice potential temperature of ice with reference pressure of 0 dbar potential temperature of ice in-situ temp from potential temp of ice with p_ref of 0 dbar in-situ temp from density of ice potential enthalpy from potential temperature of ice potential temperature from potential enthalpy of ice potential enthalpy from potential temperature of ice (poly) potential temperature from potential enthalpy of ice (poly) potential enthalpy from specific volume of ice specific volume from potential enthalpy of ice potential enthalpy from specific volume of ice (poly)

specific volume from potential enthalpy of ice (poly)

spiciness

gsw_spiciness0 spiciness with reference pressure of 0 dbar gsw_spiciness1 spiciness with reference pressure of 1000 dbar gsw_spiciness2 spiciness with reference pressure of 2000 dbar

neutral versus isopycnal slopes and ratios

gsw_isopycnal_slope_ratio ratio of the slopes of isopycnals on the SA-CT diagram for p & p_ref
gsw_isopycnal_vs_ntp_CT_ratio ratio of the gradient of CT in a potential density surface to

that in the neutral tangent plane gsw_ntp_pt_vs_CT_ratio that in the neutral tangent plane ratio of gradients of pt & CT in a neutral tangent plane

derivatives of entropy, CT and pt

gsw_CT_first_derivatives first derivatives of Conservative Temperature
gsw_CT_second_derivatives second derivatives of Conservative Temperature
gsw_entropy_first_derivatives first derivatives of entropy
gsw_entropy_second_derivatives second derivatives of entropy
gsw_pt_first_derivatives first derivatives of entropy
gsw_pt_second_derivatives second derivatives of potential temperature
gsw_pt_second_derivatives second derivatives of potential temperature

planet Earth properties

gsw_f Coriolis parameter
gsw_grav gravitational acceleration
gsw_distance spherical earth distance between points in the ocean

TEOS-10 constants

gsw T0 Celsius zero point; 273.15 K one standard atmosphere: 101 325 Pa gsw_P0 gsw SSO Standard Ocean Reference Salinity; 35.165 04 g/kg unit conversion factor for salinities; (35.165 04/35) g/kg gsw_uPS the "specific heat" for use with CT: 3991.867 957 119 63 (J/kg)/K gsw_cp0 conductivity of SSW at SP=35, t 68=15, p=0; 42.9140 mS/cm gsw C3515 gsw_SonCl ratio of SP to Chlorinity; 1.80655 (g/kg)-1 valence factor of sea salt: 1.2452898 gsw_valence_factor mole-weighted atomic weight of sea salt; 31.4038218... g/mol asw atomic weight

laboratory functions, for use with densimeter measurements

 gsw_SA_from_rho_t_exact
 Absolute Salinity from density

 gsw_deltaSA_from_rho_t_exact
 Absolute Salinity Anomaly from density

 gsw_rho_t_exact
 in-situ density

specific volume, density and enthalpy in terms of CT, based on the exact Gibbs function

gsw_alpha_CT_exact gsw_beta_CT_exact gsw_alpha_on_beta_CT_exact gsw_specvol_alpha_beta_CT_exact

gsw_specvol_CT_exact

gsw_specvol_first_derivatives_CT_exact gsw_specvol_second_derivatives_CT_exact qsw_specvol_first_derivatives_wrt_enthalpy_CT_exact

gsw_specvol_second_derivatives_wrt_enthalpy_CT_exact

gsw_specvol_anom_CT_exact gsw_specvol_anom_standard_CT_exact gsw_rho_CT_exact

gsw_rho_first_derivatives_CT_exact

gsw_rho_alpha_beta_CT_exact

gsw_rho_second_derivatives_CT_exact gsw_rho_first_derivatives_wrt_enthalpy_CT_exact gsw_rho_second_derivatives_wrt_enthalpy_CT_exact

gsw_no_second_derivatives_wrt_entnaip;
gsw_sigma0_CT_exact
gsw_sigma1_CT_exact
gsw_sigma3_CT_exact
gsw_sigma3_CT_exact
gsw_sigma4_CT_exact
gsw_cabbeling_CT_exact
gsw_thermobaric_CT_exact
gsw_enthalpy_CT_exact
gsw_enthalpy_CT_exact
gsw_enthalpy_first_derivatives_CT_exact
gsw_enthalpy_first_derivatives_CT_exact

gsw_sound_speed_CT_exact gsw_kappa_CT_exact gsw_internal_energy_CT_exact

gsw_internal_energy_first_derivatives_CT_exact gsw_internal_energy_second_derivatives_CT_exact

gsw_enthalpy_second_derivatives_CT_exact

gsw_CT_from_enthalpy_exact gsw_SA_from_rho_CT_exact gsw_CT_from_rho_exact gsw_CT_maxdensity_exact specific volume

thermal expansion coefficient with respect to CT saline contraction coefficient at constant CT

alpha divided by beta

specific volume, thermal expansion and saline

contraction coefficients first derivatives of specific volume second derivatives of specific volume

first derivatives of specific volume with respect to enthalpy

second derivatives of specific volume with respect to enthalpy

specific volume anomaly

specific volume anomaly realtive to SSO & 0°C

in-situ density and potential density

in-situ density, thermal expansion and saline

contraction coefficients first derivatives of density second derivatives of density

first derivatives of density with respect to enthalpy second derivatives of density with respect to enthalpy

sigma0 with reference pressure of 0 dbar sigma1 with reference pressure of 1000 dbar sigma2 with reference pressure of 2000 dbar sigma3 with reference pressure of 3000 dbar sigma4 with reference pressure of 4000 dbar

cabbeling coefficient thermobaric coefficient

enthalpy

difference of enthalpy between two pressures

dynamic enthalpy

first derivatives of enthalpy second derivatives of enthalpy

sound speed

isentropic compressibility

internal energy

first derivatives of internal energy second derivatives of internal energy Conservative Temperature from enthalpy

Absolute Salinity from density

Conservative Temperature from density

Conservative Temperature of maximum density

of seawater

dissolved gasses

gsw_Arsol gsw_Arsol_SP_pt gsw_Hesol gsw_Hesol_SP_pt gsw_Krsol gsw_Krsol_SP_pt gsw_N2sol gsw_N2sol_SP_pt gsw_Nesol gsw_Nesol_SP_pt gsw_O2sol gsw_O2sol_SP_pt argon solubility from SA and CT argon solubility from SP and pt helium solubility from SP and CT helium solubility from SP and pt krypton solubility from SP and CT krypton solubility from SP and pt nitrogen solubility from SA and CT nitrogen solubility from SP and pt neon solubility from SP and pt neon solubility from SP and pt oxygen solubility from SP and pt oxygen solubility from SP and CT oxygen solubility from SP and pt

basic thermodynamic properties in terms of in-situ t, based on the exact Gibbs function

gsw_specvol_t_exact gsw_alpha_wrt_CT_t_exact

gsw_alpha_wrt_pt_t_exact gsw_alpha_wrt_t_exact gsw_beta_const_CT_t_exact gsw_beta_const_ot_t_exact

gsw_beta_const_t_exact

gsw_specvol_anom_standard_t_exact gsw_rho_t_exact

gsw_pot_rho_t_exact gsw_sigma0_pt0_exact gsw_enthalpy_t_exact

gsw_dynamic_enthalpy_t_exact

gsw_CT_first_derivatives_wrt_t_exact
gsw_enthalpy first derivatives wrt t exact

gsw_sound_speed_t_exact

gsw_kappa_t_exact gsw_kappa_const_t_exact gsw_internal_energy_t_exact

gsw_SA_from_rho_t_exact gsw_t_from_rho_exact

gsw_t_maxdensity_exact

gsw_cp_t_exact

gsw_isochoric_heat_cap_t_exact gsw_chem_potential_relative_t_exact gsw_chem_potential_water_t_exact

gsw_chem_potential_salt_t_exact

gsw_t_deriv_chem_potential_water_t_exact

gsw_dilution_coefficient_t_exact gsw_Gibbs_energy_t_exact gsw_Helmholtz_energy_t_exact

gsw_osmotic_coefficient_t_exact gsw_osmotic_pressure_t_exact specific volume

thermal expansion coefficient with respect to Conservative Temperature

thermal expansion coefficient with respect to potential temperature thermal expansion coefficient with respect to in-situ temperature saline contraction coefficient at constant Conservative Temperature saline contraction coefficient at constant potential temperature saline contraction coefficient at constant in-situ temperature specific volume anomaly realtive to SSO & 0°C

in-situ density potential density

sigma0 from pt0 with reference pressure of 0 dbar

enthalpy

dynamic enthalpy

first derivatives of Conservative Temperature with respect to t first derivatives of enthalpy with respect to t

sound speed

isentropic compressibility isothermal compressibility

internal energy

Absolute Salinity from density in-situ temperature from density

in-situ temperature of maximum density of seawater

isobaric heat capacity isochoric heat capacity relative chemical potential

chemical potential of water in seawater chemical potential of salt in seawater

temperature derivative of chemical potential of water

dilution coefficient of seawater

Gibbs energy Helmholtz energy

osmotic coefficient of seawater osmotic pressure of seawater

Library functions of the GSW toolbox (internal functions; not intended to be called by users)

The GSW functions call the following library functions:

gsw_gibbs gsw_gibbs_ice gsw_SAAR gsw Fdelta gsw deltaSA atlas gsw_SA_from_SP_Baltic gsw SP from SA Baltic asw infunnel gsw_entropy_part gsw_entropy_part_zerop gsw_interp_ref_cast gsw linear interp SA CT gsw pchip interp SA CT gsw_rr68_interp_SA_CT gsw_spline_interp_SA_CT gsw_wiggliness gsw gibbs pt0 pt0 gsw_gibbs_ice_part_t gsw_gibbs_ice_pt0 gsw specvol SSO 0 gsw_enthalpy_SSO_0 asw Hill ratio at SP2

The GSW data set:

gsw data v3 0

This file contains:

gibbs(0,2,0,SA,t,0)

part of gibbs_ice(1,0,t,p)

specvol(35.16504,0,p)

enthalpv(35.16504.0.p)

part of gibbs_ice(1,0,pt0,0)

Hill ratio at a Practical Salinity of 2

(1) the global data set of Absolute Salinity Anomaly Ratio,

the TEOS-10 Gibbs function of seawater and its derivatives

Absolute Salinity Anomaly Ratio (excluding the Baltic Sea)

"oceanographic funnel" check for the 75-term equation

entropy minus the terms that are a function of only SA

Absolute Salinity Anomaly atlas value (excluding the Baltic Sea)

Reiniger & Ross (1968) interpolation of (SA,CT,p) to the desired p

the TEOS-10 Gibbs function of ice and its derivatives

ratio of Absolute to Preformed Salinity, minus 1

Calculates Absolute Salinity in the Baltic Sea

Calculates Practical Salinity in the Baltic Sea

linearly interpolates (SA,CT,p) to the desired p

pchip interpolation of (SA,CT,p) to the desired p

spline interpolation of (SA,CT,p) to the desired p

entropy part evaluated at 0 dbar

amount of variation in a cast

linearly interpolates the reference cast

- (2) the global data set of Absolute Salinity Anomaly Ref.,
- (3) a reference cast (for the isopycnal streamfunction),
- (4) two reference casts that are used by gsw_demo
- (5) three vertical profiles of (SP, t, p) at known long & lat, plus the outputs of all the GSW functions for these 3 profiles, and the required accuracy of all these outputs.

documentation set

gsw_front_page gsw_check_functions gsw_demo gsw_ver gsw_licence front page to the GSW Oceanographic Toolbox checks that all the GSW functions work correctly demonstrates many GSW functions and features displays the GSW version number creative commons licence for the GSW Oceanographic Toolbox

The GSW Toolbox is available from

www.TEOS-10.org

