Practical Salinity (SP), PSS-78

```
gsw SP from C
gsw_C_from_SP
gsw SP from R
gsw R from SP
gsw_SP_salinometer
gsw_SP_from_SK
```

Practical Salinity from conductivity, C (incl. for SP < 2) conductivity. C. from Practical Salinity (incl. for SP < 2) Practical Salinity from conductivity ratio, R (incl. for SP < 2) conductivity ratio, R, from Practical Salinity (incl. for SP < 2) Practical Salinity from a laboratory salinometer (incl. for SP < 2) Practical Salinity from Knudsen Salinity

Absolute Salinity (SA), Preformed Salinity (Sstar) and Conservative Temperature (CT)

gsw SA from SP gsw Sstar from SP gsw_CT_from_t

Absolute Salinity from Practical Salinity Preformed Salinity from Practical Salinity Conservative Temperature from in-situ temperature

Absolute Salinity – Conservative Temperature plotting function

gsw_SA_CT_plot

function to plot Absolute Salinity - Conservative Temperature profiles on the SA-CT diagram, including the freezing line and selected potential density contours

other conversions between temperatures, salinities, entropy, pressure and height

gsw_deltaSA_from_SP asw SA Sstar from SP gsw SR from SP gsw_SP_from_SR gsw SP from SA gsw_Sstar_from SA gsw_SA_from_Sstar gsw_SP_from_Sstar gsw_pt_from_CT gsw t from CT gsw_CT_from_pt gsw_pot_enthalpy_from_pt gsw pt from t gsw_pt0_from_t gsw_t_from_pt0 gsw t90 from t48 gsw_t90_from_t68 gsw_z_from_p gsw_p_from_z gsw_z_from_depth asw depth from z gsw_Abs_Pressure_from_p gsw p from Abs Pressure gsw_entropy_from_CT gsw_CT_from_entropy gsw_entropy_from_pt gsw_pt_from_entropy gsw_entropy_from_t gsw t from entropy gsw_adiabatic_lapse_rate_from_CT gsw_adiabatic_lapse_rate_from_t gsw molality from SA gsw_ionic_strength_from_SA

Absolute Salinity Anomaly from Practical Salinity Absolute Salinity & Preformed Salinity from Practical Salinity Reference Salinity from Practical Salinity Practical Salinity from Reference Salinity Practical Salinity from Absolute Salinity Preformed Salinity from Absolute Salinity Absolute Salinity from Preformed Salinity Practical Salinity from Preformed Salinity potential temperature from Conservative Temperature in-situ temperature from Conservative Temperature Conservative Temperature from potential temperature potential enthalpy from potential temperature potential temperature potential temperature with reference pressure of 0 dbar in-situ temperature from potential temperature with p ref of 0 dbar ITS-90 temperature from IPTS-48 temperature ITS-90 temperature from IPTS-68 temperature height from pressure pressure from height height from depth depth from height Absolute Pressure, P, from sea pressure, p sea pressure, p, from Absolute Pressure, P entropy from Conservative Temperature Conservative Temperature from entropy entropy from potential temperature potential temperature from entropy entropy from in-situ temperature in-situ temperature from entropy adiabatic lapse rate from Conservative Temperature adiabatic lapse rate from in-situ temperature molality of seawater ionic strength of seawater

specific volume, density and enthalpy

gsw rho

gsw specvol specific volume asw alpha thermal expansion coefficient with respect to CT gsw_beta saline contraction coefficient at constant CT gsw alpha on beta alpha divided by beta gsw_specvol_alpha_beta specific volume, thermal expansion and saline contraction coefficients gsw specvol first derivatives first derivatives of specific volume second derivatives of specific volume gsw specvol second derivatives gsw_specvol_first_derivatives_wrt_enthalpy first derivatives of specific volume with respect to enthalpy second derivatives of specific volume with respect to enthalpy gsw specvol second derivatives wrt enthalpy asw specvol anom specific volume anomaly gsw_specvol_anom_standard specific volume anomaly realtive to SSO & 0°C in-situ density and potential density in-situ density, thermal expansion and saline contraction coefficients gsw_rho_alpha_beta gsw rho first derivatives first derivatives of density gsw rho second derivatives second derivatives of density gsw_rho_first_derivatives_wrt_enthalpy first derivatives of density with respect to enthalpy second derivatives of density with respect to enthalpy gsw_rho_second_derivatives_wrt_enthalpy sigma0 with reference pressure of 0 dbar asw siama0 sigma1 with reference pressure of 1000 dbar gsw sigma1 sigma2 with reference pressure of 2000 dbar gsw_sigma2 gsw_sigma3 sigma3 with reference pressure of 3000 dbar sigma4 with reference pressure of 4000 dbar gsw sigma4 gsw_cabbeling cabbeling coefficient asw thermobaric thermobaric coefficient gsw enthalpy enthalpy gsw_enthalpy_diff difference of enthalpy between two pressures gsw_dynamic_enthalpy dynamic enthalpy gsw enthalpy first derivatives first derivatives of enthalpy gsw_enthalpy_second_derivatives second derivatives of enthalpy gsw sound speed sound speed isentropic compressibility gsw_kappa gsw_internal_energy internal energy gsw_internal_energy_first_derivatives first derivatives of internal energy gsw_internal_energy_second_derivatives second derivatives of internal energy gsw CT from enthalpy Conservative Temperature from enthalpy asw SA from rho Absolute Salinity from density gsw_CT_from_rho Conservative Temperature from density gsw CT maxdensity Conservative Temperature of maximum density of seawater

vertical stability and interpolation

gsw_Turner_Rsubrho gsw_Nsquared gsw_Nsquared_min gsw_stabilise_SA_const_t

gsw_stabilise_SA_CT gsw_mlp gsw_Nsquared_lowerlimit gsw_SA_CT_interp gsw_t_interp gsw_tracer_CT_interp gsw_tracer_interp gsw_IPV_vs_fNsquared_ratio Turner angle & Rsubrho buoyancy (Brunt-Väisäla) frequency squared (N²) minimum buoyancy frequency squared (N²) minimally adjust SA to produce a stable water column, keeping in-situ temperature constant minimally adjusts SA & CT to produce a stable water column

mixed-layer pressure specified profile of minimum buoyancy frequency squared

interpolates SA & CT to defined pressures interpolates in-situ temperature to defined pressures interpolates a tracer & CT to defined pressures interpolates a tracer to defined pressures ratio of isopycnal potential vorticity to f times N²

geostrophic streamfunctions, acoustic travel time and geostrophic velocity

gsw_geo_strf_dyn_height gsw_geo_strf_dyn_height_pc gsw_geo_strf_isopycnal gsw_geo_strf_isopycnal_pc

gsw_geo_strf_Cunningham gsw_geo_strf_Montgomery gsw_geo_strf_steric_height gsw_geo_strf_PISH gsw_travel_time gsw_geostrophic_velocity dynamic height anomaly

dynamic height anomaly for piecewise constant profiles approximate isopycnal geostrophic streamfunction approximate isopycnal geostrophic streamfunction for piecewise constant profiles Cunningham geostrophic streamfunction

Montgomery geostrophic streamfunction dynamic height anomaly divided by 9.7963 m s⁻² pressure integrated steric height acoustic travel time geostrophic velocity

seawater and ice properties at freezing temperatures

gsw_CT_freezing gsw_CT_freezing_poly asw t freezina gsw_t_freezing_poly gsw_pot_enthalpy_ice_freezing gsw_pot_enthalpy_ice_freezing_poly gsw_SA_freezing_from_CT gsw_SA_freezing_from_CT_poly gsw_SA_freezing_from_t gsw_SA_freezing_from_t_poly gsw_pressure_freezing_CT gsw CT freezing first derivatives gsw_CT_freezing_first_derivatives_poly gsw_t_freezing_first_derivatives gsw t freezing first derivatives poly gsw_pot_enthalpy_ice_freezing_first_derivatives gsw_pot_enthalpy_ice_freezing_first_derivatives_poly gsw latentheat melting

Conservative Temperature freezing temp of seawater Conservative Temperature freezing temp of seawater (poly) in-situ freezing temperature of seawater in-situ freezing temperature of seawater (poly) potential enthalpy of ice at which seawater freezes potential enthalpy of ice at which seawater freezes (poly) SA of seawater at the freezing temp (for given CT) SA of seawater at the freezing temp (for given CT) (poly) SA of seawater at the freezing temp (for given t) SA of seawater at the freezing temp (for given t) (poly) pressure of seawater at the freezing temp (for given CT) first derivatives of CT freezing temp of seawater first derivatives of CT freezing temp of seawater (poly) first derivatives of in-situ freezing temp of seawater first derivatives of in-situ freezing temp of seawater (poly) first derivatives of potential enthalpy of ice at freezing first derivatives of potential enthalpy of ice at freezing (poly) latent heat of melting of ice into seawater

thermodynamic interaction between ice and seawater

gsw_melting_ice_SA_CT_ratio gsw_melting_ice_SA_CT_ratio_poly gsw_melting_ice_equilibrium_SA_CT_ratio gsw_melting_ice_equilibrium_SA_CT_ratio_poly gsw_ice_fraction_to_freeze_seawater gsw_melting_ice_into_seawater gsw_frazil_ratios_adiabatic gsw_frazil_ratios_adiabatic_poly gsw_frazil_properties gsw_frazil_properties_potential gsw_frazil_properties_potential_poly SA to CT ratio when ice melts into seawater SA to CT ratio when ice melts into seawater (poly) SA to CT ratio when ice melts, near equilibrium SA to CT ratio when ice melts, near equilibrium (poly) ice mass fraction to freeze seawater SA and CT when ice melts in seawater ratios of SA, CT and P changes during frazil ice formation ratios of SA, CT and P changes during frazil ice formation (poly) SA, CT & ice mass fraction from bulk SA & bulk enthalpy SA, CT & ice fraction from bulk SA & bulk potential enthalpy SA, CT & ice fraction from bulk SA & bulk potential enthalpy

thermodynamic interaction between sea ice and seawater

gsw_melting_seaice_SA_CT_ratio gsw_melting_seaice_SA_CT_ratio_poly gsw_melting_seaice_equilibrium_SA_CT_ratio gsw_melting_seaice_equilibrium_SA_CT_ratio_poly gsw_seaice_fraction_to_freeze_seawater gsw_melting_seaice_into_seawater

thermodynamic properties of ice Ih

SA to CT ratio when sea ice melts into seawater SA to CT ratio when sea ice melts into seawater (poly) SA to CT ratio when sea ice melts, near equilibrium SA to CT ratio when sea ice melts, near equilibrium (poly) sea ice mass fraction to freeze seawater SA and CT when sea ice melts into seawater

asw specvol ice gsw_alpha_wrt_t_ice gsw_rho_ice asw pressure coefficient ice gsw_sound_speed_ice gsw_kappa_ice gsw kappa const t ice gsw_internal_energy_ice gsw_enthalpy_ice gsw_entropy_ice gsw_cp_ice gsw chem potential water ice asw Helmholtz energy ice gsw_adiabatic_lapse_rate_ice gsw pt0 from t ice gsw_pt_from_t_ice gsw_t_from_pt0_ice gsw t from rho ice gsw_pot_enthalpy_from_pt_ice gsw pt from pot enthalpy ice gsw_pot_enthalpy_from_pt_ice_poly gsw_pt_from_pot_enthalpy_ice_poly gsw_pot_enthalpy_from_specvol_ice gsw_specvol_from_pot_enthalpy_ice gsw_pot_enthalpy_from_specvol_ice_poly gsw specvol from pot enthalpy ice poly

specific volume of ice thermal expansion coefficient of ice with respect to in-situ temp in-situ density of ice pressure coefficient of ice sound speed of ice (compression waves) isentropic compressibility of ice isothermal compressibility of ice internal energy of ice enthalpy of ice entropy of ice isobaric heat capacity of ice chemical potential of water in ice Helmholtz energy of ice adiabatic lapse rate of ice potential temperature of ice with reference pressure of 0 dbar potential temperature of ice in-situ temp from potential temp of ice with p_ref of 0 dbar in-situ temp from density of ice potential enthalpy from potential temperature of ice potential temperature from potential enthalpy of ice potential enthalpy from potential temperature of ice (poly) potential temperature from potential enthalpy of ice (poly) potential enthalpy from specific volume of ice specific volume from potential enthalpy of ice potential enthalpy from specific volume of ice (poly) specific volume from potential enthalpy of ice (poly)

isobaric evaporation enthalpy

gsw_latentheat_evap_CT

spiciness

gsw spiciness0

gsw_spiciness1

gsw_spiciness2

latent heat of evaporation of water from seawater (isobaric evaporation enthalpy) with CT as input temperature latent heat of evaporation of water from seawater (isobaric evaporation enthalpy) with in-situ temperature, t, as input

spiciness with reference pressure of 0 dbar spiciness with reference pressure of 1000 dbar spiciness with reference pressure of 2000 dbar SA & CT from given sigma and spiciness with p_ref of 0 dbar SA & CT from given sigma and spiciness with p_ref of 1000 dbar SA & CT from given sigma and spiciness with p_ref of 2000 dbar

neutral versus isopycnal slopes and ratios

gsw_isopycnal_slope_ratio	ratio of the slopes of isopycnals on the SA-CT diagram for
gsw_isopycnal_vs_ntp_CT_ratio	ratio of the gradient of CT in a potential density surface to
gsw_ntp_pt_vs_CT_ratio	ratio of gradients of pt & CT in a neutral tangent plane

derivatives of entropy, CT and pt

gsw_SA_CT_from_sigma0_spiciness0

gsw_SA_CT_from_sigma1_spiciness1

gsw_SA_CT_from_sigma2_spiciness2

gsw_CT_first_derivativesfirst derivatives of Conservative Temperaturegsw_CT_second_derivativessecond derivatives of Conservative Temperaturegsw_entropy_first_derivativesfirst derivatives of entropygsw_entropy_second_derivativessecond derivatives of entropygsw_pt_first_derivativesfirst derivatives of potential temperaturegsw_pt_second_derivativessecond derivatives of potential temperature

planet Earth properties

gsw_fCoriolis parametergsw_gravgravitational accelerationgsw_distancespherical earth distance between points in the ocean

TEOS-10 constants

gsw_T0 gsw_P0 gsw_SSO gsw_uPS gsw_cp0 gsw_C3515 gsw_SonCl gsw_valence_factor gsw_atomic_weight Celsius zero point; 273.15 K one standard atmosphere; 101 325 Pa Standard Ocean Reference Salinity; 35.165 04 g/kg unit conversion factor for salinities; (35.165 04/35) g/kg the "specific heat" for use with CT; 3991.867 957 119 63 (J/kg)/K conductivity of SSW at SP=35, t_68=15, p=0; 42.9140 mS/cm ratio of SP to Chlorinity; 1.80655 (g/kg)-1 valence factor of sea salt; 1.2452898 mole-weighted atomic weight of sea salt; 31.4038218... g/mol

laboratory functions, for use with densimeter measurements

gsw_SA_from_rho_t_exact gsw_deltaSA_from_rho_t_exact gsw_rho_t_exact Absolute Salinity from density Absolute Salinity Anomaly from density in-situ density

specific volume, density and enthalpy in terms of CT, based on the exact Gibbs function

gsw_specvol_CT_exact gsw_alpha_CT_exact gsw_beta_CT_exact gsw_alpha_on_beta_CT_exact gsw_specvol_alpha_beta_CT_exact

gsw_specvol_first_derivatives_CT_exact gsw_specvol_second_derivatives_CT_exact gsw_specvol_first_derivatives_wrt_enthalpy_CT_exact

gsw_specvol_second_derivatives_wrt_enthalpy_CT_exact

gsw_specvol_anom_CT_exact gsw_specvol_anom_standard_CT_exact gsw_rho_CT_exact gsw_rho_alpha_beta_CT_exact

gsw_rho_first_derivatives_CT_exact gsw rho second derivatives CT exact gsw_rho_first_derivatives_wrt_enthalpy_CT_exact gsw rho second derivatives wrt enthalpy CT exact gsw sigma0 CT exact gsw_sigma1_CT_exact gsw sigma2 CT exact gsw_sigma3_CT_exact gsw_sigma4_CT_exact gsw_cabbeling_CT_exact gsw_thermobaric_CT_exact gsw_enthalpy_CT_exact gsw_enthalpy_diff_CT_exact gsw_dynamic_enthalpy_CT_exact gsw_enthalpy_first_derivatives_CT_exact gsw_enthalpy_second_derivatives_CT_exact gsw sound speed CT exact gsw_kappa_CT_exact gsw_internal_energy_CT_exact gsw internal energy first derivatives CT exact gsw_internal_energy_second_derivatives_CT_exact gsw_CT_from_enthalpy_exact gsw SA from rho CT exact gsw_CT_from_rho_exact gsw CT maxdensity exact

specific volume thermal expansion coefficient with respect to CT saline contraction coefficient at constant CT alpha divided by beta specific volume, thermal expansion and saline contraction coefficients first derivatives of specific volume second derivatives of specific volume first derivatives of specific volume with respect to enthalpy second derivatives of specific volume with respect to enthalpy specific volume anomaly specific volume anomaly realtive to SSO & 0°C in-situ density and potential density in-situ density, thermal expansion and saline contraction coefficients first derivatives of density second derivatives of density first derivatives of density with respect to enthalpy second derivatives of density with respect to enthalpy sigma0 with reference pressure of 0 dbar sigma1 with reference pressure of 1000 dbar sigma2 with reference pressure of 2000 dbar sigma3 with reference pressure of 3000 dbar sigma4 with reference pressure of 4000 dbar cabbeling coefficient thermobaric coefficient enthalpy difference of enthalpy between two pressures dynamic enthalpy first derivatives of enthalpy second derivatives of enthalpy sound speed isentropic compressibility internal energy first derivatives of internal energy second derivatives of internal energy Conservative Temperature from enthalpy Absolute Salinity from density Conservative Temperature from density Conservative Temperature of maximum density of seawater

dissolved gasses

gsw_Arsol gsw_Arsol_SP_pt gsw_Hesol gsw_Hesol_SP_pt gsw_Krsol_SP_pt gsw_N2sol gsw_N2sol_SP_pt gsw_Nesol gsw_Nesol gsw_O2sol gsw_O2sol gsw_O2sol_SP_pt argon solubility from SA and CT argon solubility from SP and pt helium solubility from SP and pt krypton solubility from SP and pt krypton solubility from SP and pt nitrogen solubility from SP and pt neon solubility from SP and pt neon solubility from SP and pt oxygen solubility from SP and pt oxygen solubility from SP and pt

basic thermodynamic properties in terms of in-situ t, based on the exact Gibbs function

asw specvol t exact gsw alpha wrt CT t exact gsw alpha wrt pt t exact gsw_alpha_wrt_t_exact gsw beta const CT t exact gsw beta const pt t exact gsw_beta_const_t_exact gsw_specvol_anom_standard_t_exact asw rho t exact gsw_pot_rho_t_exact gsw_sigma0_pt0_exact gsw enthalpy t exact gsw_dynamic_enthalpy_t_exact gsw_CT_first_derivatives_wrt_t_exact gsw enthalpy first derivatives wrt t exact gsw_sound_speed_t_exact gsw_kappa_t_exact gsw kappa const t exact gsw_internal_energy_t_exact gsw SA from rho t exact gsw t from rho exact gsw_t_maxdensity_exact gsw cp t exact gsw_isochoric_heat_cap_t_exact gsw_chem_potential_relative_t_exact gsw chem potential water t exact gsw_chem_potential_salt_t_exact gsw t deriv chem potential water t exact gsw_dilution_coefficient_t_exact asw Gibbs energy t exact gsw Helmholtz energy t exact gsw_osmotic_coefficient_t_exact gsw osmotic pressure t exact

specific volume thermal expansion coefficient with respect to Conservative Temperature thermal expansion coefficient with respect to potential temperature

thermal expansion coefficient with respect to in-situ temperature saline contraction coefficient at constant Conservative Temperature saline contraction coefficient at constant potential temperature saline contraction coefficient at constant in-situ temperature specific volume anomaly realtive to SSO & 0°C in-situ densitv potential density sigma0 from pt0 with reference pressure of 0 dbar enthalpy dynamic enthalpy first derivatives of Conservative Temperature with respect to t first derivatives of enthalpy with respect to t sound speed isentropic compressibility isothermal compressibility internal energy Absolute Salinity from density in-situ temperature from density in-situ temperature of maximum density of seawater isobaric heat capacity isochoric heat capacity relative chemical potential chemical potential of water in seawater chemical potential of salt in seawater temperature derivative of chemical potential of water dilution coefficient of seawater Gibbs energy Helmholtz energy osmotic coefficient of seawater osmotic pressure of seawater

Library functions of the GSW toolbox (internal functions; not intended to be called by users)

The GSW functions call the following library functions:

gsw_gibbs gsw_gibbs_ice gsw_SAAR gsw Fdelta gsw deltaSA atlas gsw_SA_from_SP_Baltic gsw SP from SA Baltic asw infunnel gsw_entropy_part gsw_entropy_part_zerop gsw_quadprog gsw_wiggliness gsw_data_interp gsw_interp_ref_cast gsw_linear_interp_SA_CT gsw_pchip_interp_SA_CT gsw rr68 interp SA CT gsw_spline_interp_SA_CT gsw_gibbs_pt0_pt0 gsw gibbs ice part t gsw_gibbs_ice_pt0 asw specvol SSO 0 gsw enthalpy SSO 0 gsw_Hill_ratio_at_SP2

The GSW data set:

gsw_data_v3_0

documentation set

gsw_front_page gsw_check_functions gsw_demo gsw_ver gsw_licence the TEOS-10 Gibbs function of seawater and its derivatives the TEOS-10 Gibbs function of ice and its derivatives Absolute Salinity Anomaly Ratio (excluding the Baltic Sea) ratio of Absolute to Preformed Salinity, minus 1 Absolute Salinity Anomaly atlas value (excluding the Baltic Sea) calculates Absolute Salinity in the Baltic Sea calculates Practical Salinity in the Baltic Sea "oceanographic funnel" check for the 75-term equation entropy minus the terms that are a function of only SA entropy part evaluated at 0 dbar quadratic solver for water column stabilisation amount of variation in a cast Barker & McDougall (2020) MR-pchip interpolation linearly interpolates the reference cast linearly interpolates (SA,CT,p) to the desired p pchip interpolation of (SA,CT,p) to the desired p Reiniger & Ross (1968) interpolation of (SA,CT,p) to the desired p spline interpolation of (SA,CT,p) to the desired p gibbs(0,2,0,SA,t,0) part of gibbs ice(1,0,t,p) part of gibbs_ice(1,0,pt0,0) specvol(35.16504,0,p) enthalpy(35.16504,0,p) Hill ratio at a Practical Salinity of 2

This file contains:

 the global data set of Absolute Salinity Anomaly Ratio,
 the global data set of Absolute Salinity Anomaly Ref.,
 a reference cast (for the isopycnal streamfunction),
 two reference casts that are used by gsw_demo
 three vertical profiles of (SP, t, p) at known long & lat, plus the outputs of all the GSW functions for these 3 profiles, and the required accuracy of all these outputs.

front page to the GSW Oceanographic Toolbox checks that all the GSW functions work correctly demonstrates many GSW functions and features displays the GSW version number creative commons licence for the GSW Oceanographic Toolbox

