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Notes on the function gsw_thermobaric(SA, CT, p)

Notes written 15t May 2015

This function, gsw_thermobaric calculates the thermobaric coefficient according to Eqn.
(3.8.2) of the TEOS-10 manual (IOC et al. (2010)), namely
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The input variables are Absolute Salinity S,, Conservative Temperature, and pressure.
This function uses the 75-term polynomial function expression for specific volume
gsw_specvol(SA,CT,p). This 75-term polynomial expression for specific volume is
discussed in Roquert et al. (2015) and in appendix A.30 and appendix K of the TEOS-10
Manual (IOC et al. (2010)).For dynamical oceanography we may take the 75-term
polynomial expression for specific volume as essentially reflecting the full accuracy of
TEOS-10.

A discussion of the thermobaric coefficient and the thermobaric process whereby
epineutral diffusion causes dianeutral advection may be found in section 3.8 and appendix
A.14 of the TEOS-10 manual, and these sections are repeated below.
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3.8 Thermobaric coefficient

The thermobaric coefficient quantifies the rate of variation with pressure of the ratio of the
thermal expansion coefficient and the saline contraction coefficient. With respect to
potential temperature 6 the thermobaric coefficient is (McDougall (1987b))
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This expression for the thermobaric coefficient is most readily evaluated by differentiating
an expression for density expressed as a function of potential temperature rather than in
situ temperature, that is, with density expressed in the functional form p= /3(8 N p).
With respect to Conservative Temperature ® the thermobaric coefficient is
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This expression for the thermobaric coefficient is most readily evaluated by differentiating
an expression for density expressed as a function of Conservative Temperature rather than
in situ temperature, that is, with density expressed in the functional form p = P ( Sa. 0, p).

The thermobaric coefficient enters various quantities to do with the path-dependent
nature of neutral trajectories and the ill-defined nature of neutral surfaces (see (3.13.1) —
(3.13.7)). The thermobaric dianeutral advection associated with the lateral mixing of heat
and salt along neutral tangent planes is given by e™=-gN?KT/V,0-V,P or
e =—gN KT V,0-V,P where V,# and V,0 are the two-dimensional gradients of
either potential temperature or Conservative Temperature along the neutral tangent
plane, VP is the corresponding epineutral gradient of Absolute Pressure and K is the
epineutral diffusion coefficient. Note that the thermobaric dianeutral advection is
proportional to the mesoscale eddy flux of “heat” along the neutral tangent plane,
- Cg KV,0, and is independent of the amount of small-scale (dianeutral) turbulent mixing
and hence is also independent of the dissipation of mechanical energy & (Klocker and
McDougall (2010a)). It is shown in appendix A.14 below that while the epineutral
diffusive fluxes —KV, 6 and —KV, 0 are different, the product of these fluxes with their
respective thermobaric coefficients is the same, that is, T'V,0 = T2V, 0. Hence the
thermobaric dianeutral advection e™ is the same whether it is calculated as
—gN?KTV,0-V,P oras —gN?KT°V,©-V P. Expressions for T/ and T, in terms of
enthalpy in the functional forms ﬁ(S N4 p) and ﬁ(S A0, p) can be found in appendix P.

Interestingly, for given magnitudes of the epineutral gradients of pressure and
Conservative Temperature, the dianeutral advection, e =-gN?KT°V,©-V P, of
thermobaricity is maximized when these gradients are parallel, while neutral helicity is
maximized when these gradients are perpendicular, since neutral helicity is proportional
to T, (V,PxV,0@) -k (see Eqn. (3.13.2)).

This thermobaric vertical advection process, e'°, is absent from standard layered
ocean models in which the vertical coordinate is a function only of S, and ® (such as o,,
potential density referenced to 2000 dbar). As described in appendix A.27 below, the
isopycnal diffusion of heat and salt in these layered models, caused by both parameterized
diffusion along the coordinate and by eddy-resolved motions, does give rise to the
cabbeling advection through the coordinate surfaces but does not allow the thermobaric
velocity e’ through these surfaces (Klocker and McDougall (2010a)).

In both the SIA and GSW computer software libraries the thermobaric parameter is
output in units of K™ Pa™*.
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3.11 Neutral tangent plane

The neutral plane is that plane in space in which the local parcel of seawater can be moved
an infinitesimal distance without being subject to a vertical buoyant restoring force; it is
the plane of neutral- or zero- buoyancy. The normal vector to the neutral tangent plane n
is given by
g N%n = —p'WWp + VP = —p_l(Vp - VP/CZ)

= a’veo - p’vs, (3.11.1)

= a°Ve - O Vs,.
As defined, n is not quite a unit normal vector, rather its vertical component is exactly K,
that is, its vertical component is unity. It is clear that a’V@ — 5° VS, is exactly equal to
a®VO - B°VS,. Interestingly, both a’VO and p°vVS, are independent of the four
arbitrary constants of the Gibbs function (see Eqn. (2.6.2)) while both a®Ve and p°VS,
contain an identical additional arbitrary term proportional to a; VS, ; terms that exactly
cancel in their difference, a®V0® — p®VS,, in Eqn. (3.11.1).

Expressing the two-dimensional gradient of properties in the neutral tangent plane by
V., the property gradients in a neutral tangent plane obey

~pVap+ VP = —p (Ve - V,PIC?) = a'V,0 - 7V,S,

= a®V,0-p°V, S, (3.11.2)
= 0.
Here V, is an example of a projected gradient
V.r E%ri +S—§rj + 0K, (3.11.3)

that is widely used in oceanic and atmospheric theory and modelling. Horizontal
distances are measured between the vertical planes of constant latitude x and longitude y
while the values of the property 7 are evaluated on the r surface (e. g. an isopycnal
surface, or in the case of V,, a neutral tangent plane). This coordinate system is described
by Sutcliffe (1947), Bleck (1978), McDougall (1987b), McDougall (1995) and Griffies (2004).
Note that V,z has no vertical component; it is not directed along the r surface, but rather
it points in exactly the horizontal direction.

Finite difference versions of Eqn. (3.11.2) such as a®re — B° AS, =0 are also very
accurate. Here @® and B are the values of these coefficients evaluated at the average
values of ®, S, and p of two parcels (S,ﬁ,@l, pl) and (Si,@z, pz) on a “neutral surface”
and A® and AS, are the property differences between the two parcels. The error
involved with this finite amplitude version of Eqn. (3.11.2), namely

—Tt?f(P - P)de, (3.11.4)
1

is described in section 2 and appendix A(c) of Jackett and McDougall (1997). An equally
accurate finite amplitude version of Eqn. (3.11.2) is to equate the potential densities of the
two fluid parcels, each referenced to the average pressure p =0.5(p, + p,).

The reason why oceanographers take the strong lateral mixing of mesoscale eddies to

be directed along the neutral tangent plane is because of the smallness of the observed
dissipation of mechanical energy & in the ocean interior. If the lateral diffusivity
K ~10°-10°m?s ™ of mesoscale dispersion and subsequent molecular diffusion were to
occur along a surface that differed in slope from the neutral tangent plane by an angle
whose tangent was s, then the individual fluid parcels would be transported above and
below the neutral tangent plane and would need to subsequently sink or rise in order to
attain a vertical position of neutral buoyancy.
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Figure 5. Sketch of the consequences of the adiabatic movement followed by
release of fluid parcels along a plane that is different to a neutral tangent plane.

This vertical motion would either (i) involve no small-scale turbulent mixing, in which
case the combined process is equivalent to epineutral mixing, or (ii), the sinking and rising
parcels would mix with and entrain the surrounding ocean in a plume-like fashion (see
Figure 5), so suffering irreversible diffusion. In this second case, the dissipation of
mechanical energy associated with the diapycnal mixing would be observed. But in fact
the dissipation of mechanical energy in the main thermocline is consistent with a
diapycnal diffusivity of only 10°m?s™. This small value of the diapycnal (vertical)
diffusivity has been confirmed by purposely released tracer experiments.

When lateral diffusion with diffusivity K is taken to occur along a surface other than
a neutral tangent plane, some dianeutral diffusion occurs, and the amount of this
dianeutral diffusion is the same as achieved by a vertical diffusivity of s’K where s* is
the square of the vector slope V .z -V, z between the mixing direction and the neutral
tangent plane. This result is proven as follows.

The lateral flux of Neutral Density along the direction of mixing, the r surface is

~KV,7 = -Ky,(V,z-V,z), (3.11.5)
and the component of this lateral flux across the neutral tangent plane is
—KV,y-(V,2-V,2) = -K7,(V,2-V,2)". (3.11.6)

Dividing by minus the vertical gradient of Neutral Density, —y,, shows that this flux is the
same as that caused by the positive fictitious vertical diffusivity of density
(V,z- Vnz)2 K =sK.

Hence if all of this observed diapycnal diffusivity (based on the observed dissipation
of turbulent kinetic energy &) were due to mesoscale eddies mixing along a direction
different to neutral tangent planes, the (tangent of the) angle between this mesoscale
mixing direction and the neutral tangent plane, s, would satisfy 10°m?s™ =s?K. Using
K ~10°m?s™ gives the maximum value of s to be 10, Since we believe that bona fide
interior diapycnal mixing processes (such as breaking internal gravity waves) are
responsible for the bulk of the observed diapycnal diffusivity, we conclude that the
angular difference s between the direction of mesoscale eddy mixing and the neutral
tangent plane must be substantially less than 107*; say 2x10™° for argument’s sake.
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3.13 Neutral helicity

The neutral tangent plane was defined in section 3.11 as the plane in which parcels can be
moved in an adiabatic and isohaline manner without experiencing a vertical buoyant
force. The normal n to the neutral tangent plane is given by Eqn. (3.11.1) and it is natural
to think that all these little tangent planes would link up and form a well-defined surface,
but this is not actually the case in the ocean. In order to understand why the ocean
chooses to be so ornery we need to understand what property the normal n to a surface
must fulfill in order that the surface exists.

In general, for a surface to exist in (X, y,z) space there must be a function ¢(X, y,z)
that is constant on the surface and whose gradient V¢ is in the direction of the normal to
the surface, n. That is, there must be an integrating factor b(x, y,z) such that Vg =bn.
Assuming now that the surface does exist, consider a line integral of bn along a closed
curved path in the surface. Since the line element of the integration path is everywhere
normal to n, the closed line integral is zero, and by Stokes’s theorem, the area integral of
\% x(bn) must be zero over the area enclosed by the closed curved path. Since the area
element of integration dA is in the direction n, it is clear that V x (bn) -dA is proportional
to V x(bn)-n. The only way that this area integral can be guaranteed to be zero for all
such closed paths is if the integrand is zero everywhere on the surface, that is, if
Vx(bn)-n =(Vbxn)-n + b(Vxn)-n =0, that is, if n-Vxn =0 at all locations on the
surface.

For the case in hand, the normal to the neutral tangent plane is in the direction
a®ve - p° Vs , and we define the neutral helicity H" as the scalar product of
a®ve - p° Vs, with its curl,

H" = (a®VO - 2VS,)-Vx(a®Ve - gOVs,) . (3.13.1)
Neutral tangent planes (which do exist) do not link up in space to form a well-defined
neutral surface unless the neutral helicity H" is everywhere zero on the surface.

Recognizing that both the thermal expansion coefficient and the saline contraction
coefficient are functions of (S A0, p), neutral helicity H" may be expressed as the

following four expressions, all of which are proportional to the thermobaric coefficient T,’
of the equation of state,

H" = BT VP.VS,xVO

P, BTy (V,SaxV,0)-k
g ' N°TY (V,PxV,0)-k
g N°TY(V,PxV,0)-k

(3.13.2)

Q

where P, is simply the vertical gradient of pressure (Pa m™) and V,® and V,0 are the
two-dimensional gradients of ® in the neural tangent plane and in the horizontal plane
(actually the isobaric surface) respectively. The gradients V,P and V,0 are taken in an
approximately neutral surface.

Since a’VO - p°VS, and a®VO - °VS, are exactly equal, neutral helicity can be
defined in Eqn. (3.13.1) as the scalar product of this vector with its curl based on either
formulation, so that (from the third line of Eqn. (3.13.2), and bearing in mind that V0
and V@ are parallel vectors) we see that TV, 6 = T,°V,0, a result that we use in section
3.8 and in appendix A.14. Neutral helicity has units of m=>.

Interestingly, for given magnitudes of the epineutral gradients of pressure and
Conservative Temperature, neutral helicity is maximized when these gradients are
perpendicular since neutral helicity is proportional to Ty (V,PxV,©)-k (see Eqn.
(3.13.2)), while the dianeutral advection of thermobaricity, e™=—-gN KTV, 0 -V, P, is
maximized when V,® and VP are parallel (see section 3.8).
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Because of the non-zero neutral helicity in the ocean, lateral motion following neutral
tangent planes has the character of helical motion. That is, if we ignore the effects of
diapycnal mixing processes (as well as ignoring cabbeling and thermobaricity), the mean
flow around ocean gyres still passes through any well-defined “density” surface because
of the helical nature of neutral trajectories, caused in turn by the non-zero neutral helicity.
This dia-surface flow is expressed in Eqns. (A.25.4) and (A.25.6) in terms of the
appropriate mean horizontal velocity and the difference between the slope of the neutral
tangent plane and the slope of a well-defined “density” surface.

Neutral helicity in the world ocean is observed to be small in some sense. One way of
visualizing this smallness of H" is to examine all the hydrographic data in (S A0, p)
space. When this is done for an entire ocean basin (for example, the whole of the
combined North and South Atlantic oceans), and the data is spun in this three-
dimensional (S 0, p) space, it is clear that the ocean hydrography lies close to a single
surface in this (S A0, p) space. We will now show that if all the (S A0, p) data from the
ocean lie exactly on a single surface f (S NG p) =0in (S A0 p) space, then this requires
VS, xVO-VP = 0 everywhere in physical (X, Y, z) space. That is, we will prove that the
“skinny” nature of the ocean hydrography in (S A0, p) space is a direct indication of the
smallness of neutral helicity H".

Taking the spatial gradient of f(S A0, p) = 0 in physical (X, Y, z) space we have
Vf =0 since f is zero at every point in physical (X, Y, Z) space. Expanding Vf in terms
of the spatial gradients VS,, VO, and VP, and taking the scalar product with VS, xV©
gives

folg , VSAxVO-VP = 0. (3.13.3)

P‘SA,

In the general case of f, # 0, the result VS, xV®-VP = 0 is proven. In the special case

f, =0, f is independent of P so that there is a simpler equation for the surface f,
being f (S A,@) = 0, which is the equation for a single line on the (S A,@) diagram; a single
“water-mass” for the whole world ocean. In this case, changes in S, are locally
proportional to those of ® so that VS, xV® = 0 which guarantees VS, xVO®-VP = 0.
Hence we have proven that the “skinniness” of the ocean hydrography in (S,,0, p) space
is a direct indication of the smallness of neutral helicity H".

The “skinny” nature of the North and South Atlantic hydrography is illustrated in
Figure 6, which shows all the hydrographic data on the S, -® diagram at a pressure of
500 dbar. This cut at constant pressure through the hydrographic data in three-
dimensional (S A0, p) space, and similar cuts at different fixed pressures, show that the
data from the whole physical (X, Y, z) volume of the North and South Atlantic lie close to a
single surface in the three-dimensional (S A0, p) space. Figure 6 also illustrates the
method of formation of one of Reid and Lynn’s (1971) “isopycnals” and how the potential
density anomaly with respect to the sea surface, o, of 27.3kg m~? is matched to o, of
31.938 kg m~® in the Southern Ocean but to a different o, of 27.44 kg m™ in the North
Atlantic.

0
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Gouretski Atlas of North & South Atlantic Oceans
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Figure 6. Hydrographic data from the ocean atlas of Gouretski and
Koltermann (2004) for the North and South Atlantic at a pressure of 500 dbar.
The colour of the data points indicates the latitude, from blue in the south
through green at the equator to red in the north.

Neutral helicity is proportional to the component of the vertical shear of the
geostrophic velocity (Vv,, the “thermal wind”) in the direction of the temperature gradient
along the neutral tangent plane V ©, since, from Eqn. (3.12.3) and the third line of (3.13.2)
we find that

H"= pT fv,-V,0. (3.13.4)

In the evolution equation of potential vorticity defined with respect to potential
density p’ there is the baroclinic production term p°Vp? .VpxVp (Straub (1999)) and
the first term in a Taylor series expansion for this baroclinic production term is
proportional to neutral helicity and is given by (McDougall and Jackett (2007))

p?Vp® - VpxVP ~ (P.—P)H" (3.13.5)
where P, is the reference pressure of the potential density. Similarly, the curl in a

potential density surface of the horizontal pressure gradient term in the horizontal
momentum equation, V,_ x (% Vv, p), is given by (McDougall and Klocker (2010))

o1
v, x(1V,P)-k = H“(Pr—P)(— aapz j . (3.13.6)
The fact that this curl is nonzero proves that a geostrophic streamfunction does not exist in
a potential density surface.

The absolute velocity vector in the ocean can be written as a closed expression
involving neutral helicity, and this expression is derived as follows. First the Eulerian-
mean horizontal velocity is related directly to mixing processes by invoking the water-
mass transformation equation (A.23.1), so that

vV,0 = 1.V, (r.'KV,0)+KeN6,(COV,0-V,6 + 12V, 0.V P

28 o (3.13.7)
+Dﬁ@gN‘2@jd—é);\ -¥Y.VO-0/,

where the thickness-weighted mean velocity of density-coordinate averaging, V, has been
writtenas vV = v+ ¥, that is, as the sum of the Eulerian-mean horizontal velocity V and
the quasi-Stokes eddy-induced horizontal velocity ¥_ (McDougall and McIntosh (2001)).
The quasi-Stokes vector streamfunction ¥ is usually expressed in terms of an imposed
lateral diffusivity and the slope of the locally-referenced potential density surface (Gent et
al., (1995)). More generally, at least in a steady state when ®t|n is zero, the right-hand side
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of Eqn. (3.13.7) is due only to mixing processes and once the form of the lateral and
vertical diffusivities are known, these terms are known in terms of the ocean’s
hydrography. Eqn. (3.13.9) is written more compactly as

v-T =t where T = Vn(:)/‘VnC:), (3.13.8)

and V" is interpreted as being due to mixing processes.
The mean horizontal velocity V is now split into the components along and across the
contours of ® on the neutral tangent plane so that

v = Jltxk + v, (3.13.9)

where vl = ¥-1xk. Note that if T points northwards then Txk points eastward. The
expression V-1 = v' of Eqn. (3.13.8) is now vertically differentiated to obtain
VT, = -V T 47 = —LkxV P40 (3.13.10)

where we have used the “thermal wind” equation (3.12.3), V, = PTZ kxV P. We will now
show that the left-hand side of this equation is — ¢Zv” where ¢, is the rate of rotation of the
direction of the unit vector T with respect to height (in radians per metre). By expressing
the two-dimensional unit vector 7T in terms of the angle ¢ (measured counter-clockwise)
of T with respect to due north so that T = (—sind), cosq)), we see that Txk = (cosq), sinq)),
T, =—-¢,1xk and k-tx1_= ¢_. Interestingly, ¢, is also equal to minus the helicity of T
(and to minus the helicity of Txk), that is, o =- T-Vx1 = - (‘cxk)Vx(’txk), where
the helicity of a vector is defined to be the scalar product of the vector with its curl. From
the velocity decomposition (3.13.9) and the equation T = —¢_txk we see that the left-
hand side of Eqn. (3.13.10), v- T_,is — ¢zv”, hence V! can be expressed as

2 K.V Px + " ;
g N kV,PxT v or = H—® N R RE)
fep 9, 9. 4,pf TV, 0 :

where we have used the definition of neutral helicity H", Eqn. (3.13.2). The expression for
both horizontal components of the Eulerian-mean horizontal velocity vector V is

_ N? k-V Pxt v .
V=——2— -2t 1xk +vT, (3.13.12)
fep 9. 9.
and the horizontal velocity due to solely the two mixing terms can be expressed as
1 132
- ;—z Txk +vi1T = % (Tikj , which has the magnitude ¢L (vl’cx k) . (3.13.13)
z z v z z z

Equation (3.13.12) for the Eulerian-mean horizontal velocity V shows that in the
~=0) and so long as (i) the epineutral o)
contours do spiral in the vertical and (ii) ‘Vn@ is not zero, then neutral helicity H" (which
is proportional to k-V P x 1) is required to be non-zero in the ocean whenever the ocean is

absence of mixing processes (so that v'=v

not motionless. Neutral helicity arises in this context because it is proportional to the
component of the thermal wind vector V, in the direction across the ® contour on the
neutral tangent plane (see Eqn. (3.13.4)). This derivation of the expression for the mean
absolute horizontal velocity vector V is based on McDougall (1995) and Zika et al. (2010a).

A.14 Advective and diffusive “heat” fluxes

In section 3.23 and appendices A.8 and A.13 the First Law of Thermodynamics is shown to
be practically equivalent to the conservation equation (A.21.15) for Conservative
Temperature ®. We have emphasized that this means that the advection of “heat” is very
accurately given as the advection of CgG). In this way CgG) can be regarded as the “heat
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content” per unit mass of seawater and the error involved with making this association is
approximately 1% of the error in assuming that either c)# or c,(S,,60, 0dbar)@ is the
“heat content” per unit mass of seawater (see also appendix A.21 for a discussion of this
point).

The turbulent flux of a “potential” property can be thought of as the exchange of
parcels of equal mass but contrasting values of the “potential” property, and the turbulent
flux can be parameterized as being down the gradient of the “potential” property. The
conservative form of Eqn. (A.21.15) implies that the turbulent flux of heat should be
directed down the mean gradient of Conservative Temperature rather than down the
mean gradient of potential temperature. In this appendix we quantify the ratio of the
mean gradients of potential temperature and Conservative Temperature.

Consider first the respective temperature gradients along the neutral tangent plane.
From Eqn. (3.11.2) we find that

(°/B°)V40 = VoSa= (a®/5°)V,0, (A.14.1)

so that the epineutral gradients of # and ©® are related by the ratios of their respective
thermal expansion and saline contraction coefficients, namely
©/po

a®/

(«"/#")
This proportionality factor between the parallel two-dimensional vectors V 6 and VO is
readily calculated and illustrated graphically. Before doing so we note two other
equivalent expressions for this proportionality factor. A

The epineutral gradients of #, ® and S, are related by (using 6 = 6(S,,0))

Vol = 05V,0 + 05, V,5,, (A.14.3)
and using the neutral relationship VS, = (aG/ B° )Vn® we find

V.0 = (é® + [a®/ﬁ®]éSA)vn®. (A.14.4)

Also, in section 3.13 we found that T,/V,0 = T,°V, 0, so that we find the expressions
v (%) w0
V46 (0!9/,39) Ty
and it can be shown that 0:@/05¢9 = é® and ﬂg/ﬂg = (1 + [ag/ﬂ(ﬂésA/é@), that is,
Bl=p°%+a® s, / 0y. The ratios a®/ @’ and p° / B° have been plotted by Graham and
McDougall (2013); interestingly a®/ a’ s approximately a linear function of S, while
B°/p° is approximately a function of only ©. The partial derivatives 6, and s, in the
last part of Eqn. (A.14.5) are both independent of pressure while a®/° is a function of
pressure. The ratio, Eqn. (A.14.5), of the epineutral gradients of # and © is shown in
Figure A.14.1 at p =0, indicating that the epineutral gradient of potential temperature is
sometimes more that 1% different to that of Conservative Temperature. This ratio
|Vnt9| / |Vn®| is only a weak function of pressure. This ratio, Vnt9| / |Vn®| (i.e. Eqn. (A.14.5)),

is available in the GSW Oceanographic Toolbox as function gsw_ntp_pt_vs_CT_ratio.
Similarly to Eqn. (A.14.3), the vertical gradients are related by

= 0 +[a®/p°]6s, (A.14.5)

0, = 050, + 5,55, , (A.14.6)
and using the definition, Eqn. (3.15.1), of the stability ratio we find that
é. A _ A~
o = 0o+ R «®/B° 65, (A.14.7)

z
For values of the stability ratio R, close to unity, the ratio 6,/®, is close to the values of
|Vn9|/|Vn®| shown in Figure A.14.1.
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Figure A.14.1. Contours of (|V,6|/|V,0| — 1) x100% at p =0, showing the percentage
difference between the epineutral gradients of § and ®. The red dots
are from the ocean atlas of Gouretski and Koltermann (2004) at p=0.

As noted in section 3.8 the dianeutral advection of thermobaricity is the same when
quantified in terms of € as when done in terms of ® . The same is not true of the dianeutral
velocity caused by cabbeling. The ratio of the cabbeling dianeutral velocity calculated using
potential temperature to that using Conservative Temperature is given by
(CgVnH . Vnﬁ)/ Cov,0- Vn®) (see section 3.9) which can be expressed as

oo coe®/r) e (

0\? o . .
colv.ef  C (aa/ﬂa)z " ¢co TLJ = C—%(% +[a®/ﬂ®]ﬁsA)z, (A.14.8)
b n

1!

and this is contoured in Fig. A.14.2. While the ratio of Eqn. (A.14.8) is not exactly unity, it
varies relatively little in the oceanographic range, indicating that the dianeutral advection
due to cabbeling estimated using 6 or © are within half a percent of each otherat p=0.
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Figure A.14.2. Contours of the percentage difference of (Cg |Vn0|2) / (Cg) |Vn®|2)
from unity at p =0 dbar.



