Notes on the function gsw_isopycnal_slope_ratio(SA, CT, p)

This function $gsw_isopycnal_slope_ratio(SA,CT,p)$ evaluates the ratio r of the slope on the $S_A - \Theta$ diagram of an isoline of potential density with reference pressure p_r to the slope of a potential density surface with reference pressure p, and is defined by (from section 3.17 of the TEOS-10 Manual, IOC et al. (2010))

$$r = \frac{\alpha^{\Theta}(S_{A}, \Theta, p) / \beta^{\Theta}(S_{A}, \Theta, p)}{\alpha^{\Theta}(S_{A}, \Theta, p_{r}) / \beta^{\Theta}(S_{A}, \Theta, p_{r})}.$$
(3.17.2)

This function, gsw_isopycnal_slope_ratio(SA,CT,p), uses the 48-term expression for density, $\hat{\rho}(S_{\Lambda}, \Theta, p)$. This 48-term rational function expression for density is discussed in appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)). For dynamical oceanography we may take the 48-term rational function expression for density as essentially reflecting the full accuracy of TEOS-10.

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

Here follows section 3.17 of the TEOS-10 Manual (IOC et al. (2010)).

3.17 Property gradients along potential density surfaces

The two-dimensional gradient of a scalar φ along a potential density surface $\nabla_{\sigma}\varphi$ is related to the corresponding gradient in the neutral tangent plane $\nabla_n \varphi$ by

$$\nabla_{\sigma}\varphi = \nabla_{n}\varphi + \frac{\varphi_{z}}{\Theta_{z}} \frac{R_{\rho}[r-1]}{\left[R_{\rho}-r\right]} \nabla_{n}\Theta$$
(3.17.1)

(from McDougall (1987a)), where r is the ratio of the slope on the $S_A - \Theta$ diagram of an isoline of potential density with reference pressure p_r to the slope of a potential density surface with reference pressure p, and is defined by $r = \frac{\alpha^{\Theta}(S_{\mathrm{A}}, \Theta, p) / \beta^{\Theta}(S_{\mathrm{A}}, \Theta, p)}{\alpha^{\Theta}(S_{\mathrm{A}}, \Theta, p_{\mathrm{r}}) / \beta^{\Theta}(S_{\mathrm{A}}, \Theta, p_{\mathrm{r}})}.$

$$r = \frac{\alpha^{\Theta}(S_{A}, \Theta, p) / \beta^{\Theta}(S_{A}, \Theta, p)}{\alpha^{\Theta}(S_{A}, \Theta, p_{r}) / \beta^{\Theta}(S_{A}, \Theta, p_{r})}.$$
(3.17.2)

Substituting $\varphi = \Theta$ into (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of Θ

$$\nabla_{\sigma}\Theta = \frac{r[R_{\rho} - 1]}{[R_{\rho} - r]}\nabla_{n}\Theta = G^{\Theta}\nabla_{n}\Theta$$
(3.17.3)

where the "isopycnal temperature gradient ratio"

$$G^{\Theta} \equiv \frac{\left[R_{\rho} - 1\right]}{\left[R_{\rho}/r - 1\right]} \tag{3.17.4}$$

has been defined as a shorthand expression for future use. This ratio G^{Θ} is available in the GSW Toolbox from the algorithm $\mathbf{gsw_isopycnal_vs_ntp_CT_ratio}$, while the ratio r of Eqn. (3.17.2) is available there as $\mathbf{gsw_isopycnal_slope_ratio}$. Substituting $\varphi = S_{A}$ into Eqn. (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of S_{A}

$$\nabla_{\sigma} S_{\mathcal{A}} = \frac{\left[R_{\rho} - 1\right]}{\left[R_{\rho} - r\right]} \nabla_{n} S_{\mathcal{A}} = \frac{G^{\Theta}}{r} \nabla_{n} S_{\mathcal{A}}. \tag{3.17.5}$$