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2 Getting Started with TEOS-10

1. Preamble

The International Thermodynamic Equation Of Seawater — 2010 (TEOS-10) allows all the
thermodynamic properties of pure water, ice, seawater and moist air to be evaluated in a self-
consistent manner. For the first time the effects of the variations in seawater composition
around the world ocean are accounted for; these spatial variations of seawater composition
cause density differences that are equivalent to ten times the precision of our Practical
Salinity measurements at sea.

The GSW Oceanographic Toolbox of TEOS-10 is concerned primarily with the properties
of pure liquid water and of seawater; the TEOS-10 software for evaluating the properties of
ice and of humid air is available in the SIA (Seawater-Ice-Air) software library from the
TEOS-10 web site, http://www.TEOS-10.0rg.

TEOS-10 has introduced several new variables into oceanography, including Absolute

Salinity S,, Preformed Salinity S., and Conservative Temperature ©. These variables are
introduced in this document, and then the use of these variables is discussed, followed by the
complete listing and description of the functions available in the GSW toolbox.

Absolute Salinity is the salinity argument of the TEOS-10 algorithms which give the
various thermodynamic properties of seawater, and under TEOS-10 Absolute Salinity S, is
the salinity variable to be used in scientific publications. Note, however, it is Practical
Salinity S, which must be reported to and stored in national databases. The practice of
storing one type of salinity in national databases (Practical Salinity), but using a different
type of salinity in publications (Absolute Salinity), is exactly analogous to our present
practice with temperature; in situ temperature is stored in databases (since it is the measured
quantity), but the temperature variable that is used in publications is a calculated quantity,
being potential temperature to date, and from now, Conservative Temperature.

For the past thirty years, under EOS-80 we have taken the “raw” data of Practical
Salinity S, (PSS-78), in situ temperature t (now ITS-90) and pressure p and we have used
an algorithm to calculate potential temperature 6 in order to analyze and publish water-
mass characteristics on the S, —@ diagram. On this S, —@ diagram we have been able to
draw curved contours of potential density using EOS-80. Under TEOS-10 this practice has
now changed. Density and potential density (and all types of geostrophic streamfunction
including dynamic height anomaly) are now not functions of Practical Salinity S, but rather
are functions of Absolute Salinity S,. TEOS-10 also defines a new temperature variable,
Conservative Temperature ©, which takes the place of potential temperature 6.
Conservative Temperature © has the advantage over € of more accurately representing the
“heat content” of seawater. Under TEOS-10 is not possible to draw isolines of potential
density on a S, —@ diagram. Rather, because of the spatial variations of seawater
composition, a given value of potential density defines an area on the S, —@ diagram, not a
curved line. Hence for the analysis and publication of ocean data under TEOS-10 we need to
change from using the S, —@ diagram which was appropriate under EOS-80, to using the
S, —O diagram. It is on this S, —© diagram that the isolines of potential density can be
drawn under TEOS-10.

As a fast-track precursor to the rest of this document, we note that these calculations
can be performed using the functions of the GSW Oceanographic Toolbox as follows. The
observed variables (SP, t, p), together with longitude and latitude, are used to first form
Absolute Salinity S, using gsw_SA_from_SP, and then Conservative Temperature © is
calculated using gsw_CT_from_t. Oceanographic water masses are then analyzed on the
S, — O diagram (for example, by using gsw_SA_CT_plot), and potential density contours
can be drawn on this S, —© diagram using gsw_rho(SA,CT,p_ref).
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The more prominent advantages of TEOS-10 compared with EOS-80 are

* For the first time the influence of the spatially varying composition of seawater is
systematically taken into account through the use of Absolute Salinity S,. In the open
ocean, this has a non-trivial effect on the horizontal density gradient, and thereby on
ocean velocities and “heat” transports calculated via the “thermal wind” relation.

* The new salinity variable, Absolute Salinity S,, is measured in SI units (e.g. ¢ kg™).

* The Gibbs function approach of TEOS-10 allows the calculation of internal energy,
entropy, enthalpy, potential enthalpy and the chemical potentials of seawater as well
as the freezing temperature, and the latent heats of melting and of evaporation. These
quantities were not available from EOS-80 but are essential for the accurate
accounting of “heat” in the ocean and for the consistent and accurate treatment of air-
sea and ice-sea heat fluxes in coupled climate models.

* In particular, Conservative Temperature © accurately represents the “heat content”
per unit mass of seawater, and is to be used in place of potential temperature 6 in
oceanography.

* The thermodynamic quantities available from TEOS-10 are totally consistent with each
other, while this was not the case with EOS-80.

* A single algorithm for seawater density (the 75-term computationally-efficient
expression \7(8 el p)) can now be used for ocean modelling, for observational
oceanography, and for theoretical studies. By contrast, for the past 30 years we have
used different algorithms for density in ocean modelling and in observational
oceanography and inverse modelling.

The present document (McDougall and Barker, 2011) provides a short description of the
three new oceanographic variables S,, S. and ©, leading into a discussion of the changes to
observational oceanography and ocean modelling under TEOS-10 (compared with EOS-80),
and then we list and describe the functions in the GSW Oceanographic Toolbox. The present
document ends with the recommendations of SCOR/IAPSO Working Group 127, as endorsed
by the Intergovernmental Oceanographic Commission, for the nomenclature, symbols and
units to be used in physical oceanography, repeated from appendix L of 1I0C et al. (2010).
Another document “What every oceanographer needs to know about TEOS-10 (The TEOS-10
Primer)” (Pawlowicz, 2010) provides a succinct introduction to the thermodynamic theory
underlying TEOS-10 and is available from www.TEOS-10.0rg.

Note that when referring to the use of TEOS-10, it is the TEOS-10 Manual which should
be referenced as IOC et al. (2010) [IOC, SCOR and IAPSO, 2010: The international
thermodynamic equation of seawater — 2010: Calculation and use of thermodynamic properties.

Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO
(English), 196 pp.].
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2. Installing the GSW Oceanographic Toolbox in MATLAB

Step 1
Download the GSW Oceanographic Toolbox in MATLAB from www.TEOS-10.0rg.

Step 2
Unzip the Toolbox to a directory you name “GSW”.
ENSURE THAT THE FOUR SUBFOLDERS (html, library, pdf,
thermodynamics_from_t) HAVE ALSO BEEN EXTRACTED.

Step 3 (within MATLAB)
Add the “GSW” directory to your MATLAB path using “Add with subfolders ...”
That is, use the menus as follows “File” — “Set Path...” — “Add with subfolders ...”.
(Alternatively, the “addpath” command could be used).

ENSURE THAT THE FOUR SUBFOLDERS (html, library, pdf,
thermodynamics_from_t) HAVE ALSO BEEN ADDED TO THE PATH.

Step 4
Run gsw_check_functions to check that the Toolbox is correctly installed and that
there are no conflicts. (This function runs three stored vertical profiles through all of
the GSW functions, and checks that the outputs are within pre-defined limits of the
correct values. These pre-defined limits are a factor of approximately a hundred larger
than the errors expected from the numerical precision of different computers, at the
standard double precision of MATLAB).

If the MATLAB Desktop is running,
Step 5
Run gsw_front_page to gain access to the front page of the GSW Oceanographic
Toolbox, which describes all aspects of the Toolbox.

Having installed the GSW Oceanographic Toolbox, the command gsw_contents will
show the contents list of the software functions. The software descriptions and the help files
for the GSW functions can be accessed by clicking on the function names on this list.

In addition, we have included a short demonstration function, gsw_demo, to introduce
the user to the GSW Oceanographic Toolbox. gsw_demo uses two stored (SP, t, p) profiles
from the North Pacific and demonstrates, in a step-by-step manner, how to convert these
into (SA, 0, p) profiles. gsw_demo then demonstrates how to evaluate several water-
column properties such as dynamic height, geostrophic streamfunction and geostrophic
velocity, as well as forming potential density contours on the S, —© diagram.

A user may want to run gsw_check_functions periodically to confirm that the software
remains uncorrupted.
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3. Absolute Salinity Sp

Perhaps the most apparent change in using TEOS-10 compared with using the
International Equation of State of seawater (EOS-80) is the adoption of Absolute Salinity S,
instead of Practical Salinity S, (PSS-78) as the salinity argument for evaluating the
thermodynamic properties of seawater. Importantly, Practical Salinity is retained as the
salinity variable that is stored in national databases. This is done to maintain continuity in
the archived salinity variable, and also because Practical Salinity is virtually the measured
variable (whereas Absolute Salinity is a calculated variable).

The “raw” physical oceanographic data, as collected from ships and from autonomous
platforms (e. g. Argo), and as stored in national oceanographic data bases, are

* Practical Salinity ( Sy, unitless, PSS-78) and

* in situ temperature (t, °C, ITS-90) as functions of

» sea pressure ( p, dbar), at a series of

* longitudes and latitudes.

Under TEOS-10 all the thermodynamic properties are functions of Absolute Salinity S,
(rather than of Practical Salinity), hence the first step in processing oceanographic data is to
calculate Absolute Salinity, and this is accomplished by the GSW function
gsw_SA_from_SP. Hence the function gsw_SA_from_SP is perhaps the most fundamental
of the GSW functions as it is the gateway leading from oceanographic measurements to all
the thermodynamic properties of seawater under TEOS-10. A call to this function can be
avoided only if one is willing to ignore the influence of the spatial variations in the
composition of seawater on seawater properties (such as density and specific volume). If
this is indeed the intention, then the remaining GSW functions must be called with the
salinity argument being Reference Salinity S, and most definitely, not with Practical
Salinity S, . Reference Salinity Sy can be obtained from the function gsw_SR_from_SP.

The gsw_SA_from_SP(SP,p,long,lat) function first interpolates the global Absolute
Salinity Anomaly Ratio (R’) data set using the internal GSW library function gsw_SAAR to
the (p,longlat) location. gsw_SA_from_SP then uses this interpolated value of RY to
calculate Absolute Salinity S, according to (see Eqn. (A.5.10) of appendix A.5 of the
TEOS-10 Manual, IOC et al. (2010) and McDougall et al. (2012))

35.165 04 gkg™
35

In this expression (35.165 04 gkg_l/35) Sp is the Reference Salinity Sy, which is the best
estimate of Absolute Salinity of a Standard Seawater sample.

Eqn. (1) is the value of Absolute Salinity returned by gsw_SA_from_SP unless the
function detects that the location is in the Baltic Sea (where incidentally the internal GSW
library function gsw_SAAR returns a value of R’ of zero). If the observation is from the
Baltic Sea, the Absolute Salinity Anomaly JS, is calculated according to
Sp—Sg = 0.087¢g kg™ x (l—SP/35) (from Eqn. (A.5.16) of IOC et al. (2010), following Feistel et
al. (2010)), so that Absolute Salinity S, is given by

Sp =

s (1+R%). Non-Baltic (1)

_ (35.16504 — 0.087) gkg™

" 35
In summary, the gsw_SA_from_SP function returns either Eqn. (1) or Eqn. (2)
depending on whether the longitude and latitude of the sample put the observation outside
or inside the Baltic Sea. Since Practical Salinity should always be positive but there are

sometimes a few negative values from a CTD, any negative input values of S, to this
function gsw_SA_from_SP are set to zero.

S, + 0.087 gkg. Baltic Sea (2)

If the latitude and longitude are such as to place the observation well away from the
ocean, a flag ‘in_ocean’ is set to zero as a warning, otherwise it is 1. This flag is only set
when the observation is well and truly on dry land; often the warning flag is not set until
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one is several hundred kilometers inland from the coast. When the function detects that the
observation is not from the ocean, R’ is set equal to zero and gsw_SA_from_SP returns
SA=Sg = (35.165 04 gkg™t/ 35) Sp in accordance with Eqn. (1).

The largest influence of the variable seawater composition occurs in the northern North
Pacific where S, —S; = 8S, is as large as 0.027 g kg™ (see Figure 2 of IOC et al. (2010)
which is reproduced below), this being the difference between Absolute Salinity and the
estimate of Absolute Salinity which can be made on the basis of Practical Salinity alone. This
increment of salinity equates to an increment of density of approximately 0.020 kg m™.

8S, (g kg™') at p = 2000 dbar

_90 1 Il

45 90 135 180 225 270 315

| L
0 0.005 0.0 0.015 0.02 0.025

Figure 2 (a). Absolute Salinity Anomaly ¢S, at p =2000 dbar.

Figure 2 (b). A vertical section of Absolute Salinity
Anomaly ¢S, along 180°E in the Pacific Ocean.
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In order to gauge the importance of the spatial variation of seawater composition, the
northward gradient of density at constant pressure is reproduced below from Fig. A.5.1 of
IOC et al. (2010) for the data in a world ocean hydrographic atlas deeper than 1000m. The
vertical axis in this figure is the magnitude of the difference between the northward density
gradient at constant pressure when the TEOS-10 algorithm for density is called with S, (as
it should be) compared with calling the same TEOS-10 density algorithm with S; as the
salinity argument. Figure A.5.1 shows that the “thermal wind” is misestimated by more
than 2% for 58% of the data in the world ocean below a depth of 1000m if the effects of the
variable seawater composition are ignored. When this same comparison is done for only the
North Pacific, it is found that 60% of the data deeper than 1000m has “thermal wind”
misestimated by more than 10% if S, is used in place of S, .

The first version of gsw_SA_from_SP was made available in January 2009 (then called
gsw_ASal). The second version (version 2.0) was released in October 2010 and superseded
version 1. The third version (version 3.0) was released in May 2011 and supersedes version
2.0. This is unchanged in version 3.05 which was released in March 2015.

Figure A.5.1. The northward density gradient at constant pressure (the horizontal axis)
for data in the global ocean atlas of Gouretski and Koltermann (2004) for
p >1000dbar. The vertical axis is the magnitude of the difference
between evaluating the density gradient using S, versus S; as the
salinity argument in the TEOS-10 expression for density.

As discussed in Pawlowicz (2010), Wright et al. (2011) and IOC et al. (2010), there are
actually several contenders for the title of the “absolute salinity” of seawater, namely
“Solution Salinity”, “Added-Mass Salinity”, and “Density Salinity”. The paper of Wright et
al. (2011) presents a clear and readable account of this difficult subject, however the nuances
surrounding these different definitions of absolute salinity need not concern most physical
oceanographers. Under TEOS-10 the words Absolute Salinity and symbol S, are reserved
for “Density Salinity” such as can be deduced using laboratory measurements with a
vibrating beam densimeter.
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4. Preformed Salinity S,

Absolute Salinity S,, Reference Salinity S; and Practical Salinity S, are all
conservative salinity variables under the processes of (i) adiabatic pressure changes, and (ii)
turbulent mixing, but none of these three salinity variables are conservative in the presence
of (iii) biogeochemical processes. Preformed Salinity S. is designed to be a conservative
salinity variable which is unaffected by biogeochemical activity in the ocean; it is defined as
Absolute Salinity less the contributions of biogeochemical processes to Absolute Salinity.

The gsw_Sstar_from_SP(SP,p,long,lat) function first interpolates the global Absolute
Salinity Anomaly Ratio (R%) data set using the internal GSW library function gsw_SAAR to
the (plong,lat) location. gsw_Sstar_from_SP then uses this interpolated value of R to
calculate Preformed Salinity S. according to (see Eqn. (A.5.11) of appendix A.5 of the TEOS-
10 Manual, IOC et al. (2010))

35.165 04 gkg™ s
35

where 1, is taken to be the constant 0.35 based on the work of Pawlowicz et al. (2011). Note
that (35.165 04 gkg™ /35) Sp is Reference Salinity Sy which is the best estimate of Absolute
Salinity for a Standard Seawater sample. The figure below (from Figure A.4.1 of the TEOS-
10 Manual, IOC et al., 2010) illustrates the relationships between Preformed Salinity S.,
Reference Salinity S; and Absolute Salinity S, .

S, =

P (1 - I’lR‘S) , Non-Baltic 3)

Figure A.4.1. Number line of salinity, illustrating the differences between
Preformed Salinity S., Reference Salinity S;, and Absolute
Salinity S, for seawater whose composition differs from that
of Standard Seawater.

Equation (3) is the value of Preformed Salinity S. returned by gsw_Sstar_from_SP
unless the function detects that the location is in the Baltic Sea (where incidentally the
internal GSW library function gsw_SAAR returns a value of R® of zero). In the Baltic Sea
the deviations of Absolute Salinity from Reference Salinity are not due to non-conservative
biogeochemical processes but rather are due to the anomalous composition entering the
Baltic from rivers. Since these anomalous constituents are conservative, Preformed Salinity
S+ in the Baltic Sea is Absolute Salinity S,. Hence, if the observation is from the Baltic Sea,
Preformed Salinity S. is calculated using the relation S, —S; = 0.087¢ kg_1><(l—SP /35)
(from Eqn. (A.5.6) of IOC et al. (2010), following Feistel et al. (2010)), so that

35.16504 — 0.087) gkg™
s =5, =\ = VO | 0087 gkgt BaricSer (@)
In summary, the gsw_Sstar_from_SP function returns either Eqn. (3) or Eqn. (4)
depending on whether the longitude and latitude of the sample put the observation outside
or inside the Baltic Sea. Since Practical Salinity should always be positive but there are

sometimes be a few negative values from a CTD, any negative input values of S, to this

function gsw_Sstar_from_SP are set to zero.
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If the latitude and longitude are such as to place the observation well away from the
ocean, a flag ‘in_ocean’ is set to zero as a warning, otherwise it is 1. This flag is only set
when the observation is well and truly on dry land; often the warning flag is not set until
one is several hundred kilometers inland from the coast. When the function detects that the
observation is not from the ocean, R? is set equal to zero and gsw_Sstar_from_SP returns
S« =S = (35.165 049 kg_l/35) Sp in accordance with Eqn. (3).

The largest influence of the variable seawater composition occurs in the northern North
Pacific where S; — S. is almost 0.01 g kg™, and the difference between Absolute Salinity and
the conservative Preformed Salinity, S, — S., is as large as 0.036 g kg™!, equivalent to an
increment of density of approximately 0.028 kg m™.

Continuing to concentrate on the mid-depth northern North Pacific, recall that the
salinity difference S, — Sy = &S, of 0.027 g kg™ represents the difference between Absolute
Salinity and the estimate of it using only Practical Salinity, while the value of S, — S, of
0.036 g kg is the total influence of biogeochemical processes on Absolute Salinity. An
ocean model which treats its salinity variable as being conservative needs to account for this
salinity difference, S, —S., before density and the “thermal wind” can be accurately
calculated. The reason why the salinity differences S, — Sg and S, — S. are not equal is that
biogeochemical processes have an effect on the conductivity of seawater and therefore on
Practical Salinity and Reference Salinity.

What then is the appropriate use of Preformed Salinity S.? This salinity variable is the
one which can be treated as being conservative. Hence, in contrast to the evolution equation
of Absolute Salinity S,, the evolution equation for Preformed Salinity S. does not contain
non-conservative source terms caused by biogeochemistry (see appendix A.20 of IOC et al.
(2010)). This means that Preformed Salinity S. is ideal for use as

(i) the salinity variable that is advected and diffused in forward ocean models,

(if) the salinity variable that is advected and diffused in inverse ocean models, and

(iii) the salinity variable that is averaged when forming a hydrographic atlas.
In these applications, the salinity difference S, — S. is added to the averaged atlas or model
salinity variable to form Absolute Salinity S, before other thermodynamic properties (such
as density etc.) are calculated. Because of its conservative nature, there is an argument that
suggests that Preformed Salinity S. should be used in place of Absolute Salinity S, as the
salinity axis of the S, —© diagram, since water masses are notionally mixed on this
diagram. However, to do so would take away the ability to draw isolines of potential
density on this diagram, so the S, —© diagram (as opposed to the S.—-@® diagram) is
recommended for water-mass analysis.
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5. Conservative Temperature ©

Because the TEOS-10 properties of seawater are all derived from a Gibbs function, it is
possible to find thermodynamic properties such as enthalpy, internal energy and entropy.
Hence potential enthalpy and Conservative Temperature (which is simply proportional to
potential enthalpy) are readily available.

Conservative Temperature is in some respects quite similar to potential temperature in
that the same artificial thought experiment is involved with their definitions. In both cases
one takes a seawater sample at an arbitrary pressure in the ocean and one imagines
decreasing the pressure on the seawater parcel in an adiabatic and isohaline manner until
the sea pressure p =0 dbar is reached. The temperature of the fluid parcel at the end of this
artificial thought experiment is defined to be the potential temperature 6. Similarly, the
enthalpy at the end of this artificial thought experiment is defined to be the potential
enthalpy h°, and Conservative Temperature © is simply potential enthalpy divided by the
fixed “heat capacity” ¢, = 3991.867 957119 63 Jkg ' K™.

Conservative Temperature © represents the “heat content” of seawater much more
accurately than does potential temperature 8 (McDougall (2003), Graham and McDougall,
2013). O can be evaluated from in situ temperature t from the function gsw_CT_from_t.
The difference between potential temperature and Conservative Temperature can be as large
as 8 — © = —1.4°C but is more typically no more than + 0.1°C (see Figure A.17.1 of IOC et
al. (2010) which is reproduced below). To put a temperature difference of 0.1°C in context,
this is the typical difference between in situ and potential temperatures for a pressure
difference of 1000 dbar, and it is approximately 40 times as large as the typical differences
between ty, and tgg in the ocean.

Figure A.17.1. Contours (in °C) of the difference between potential temperature
and Conservative Temperature §—0©. This plot illustrates the non-
conservative production of potential temperature € in the ocean.
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The air-sea heat flux is exactly proportional to the flux of Conservative Temperature,
and because O is almost a perfectly conservative variable, the meridional “heat” flux is very
accurately given by the meridional flux of © (as opposed to the meridional flux of potential
temperature). Also, the parameterized lateral diffusion of “heat” along neutral tangent
planes can be more than 1% different when such lateral diffusive heat fluxes are estimated
using gradients of potential temperature rather than gradients of Conservative Temperature
(see Figure A.14.1 of IOC et al. (2010) which is reproduced below).

For these reasons Conservative Temperature © is the appropriate temperature variable
to be used in ocean analyses. Just as Absolute Salinity S, is now to be used in
oceanographic publications instead of Practical Salinity, so too Conservative Temperature ©
takes the place of potential temperature 6 under TEOS-10.

Figure A.14.1. Contours of (|Vn49|/|VnG)| - 1) x100% at p =0, showing the percentage
difference between the epineutral gradients of & and ©. The red dots
are from the global ocean atlas of Gouretski and Koltermann (2004) at

p=0.
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6. Which types of salinity and temperature should be archived?

Since 1978 we have gone to sea and collected and then archived Practical Salinity S,
(PSS-78), in situ temperature t (now ITS-90) and pressure p at known values of longitude,
latitude and time. Under TEOS-10, nothing about this data collection and storage changes.
Our instruments still need to measure properly calibrated data of (SP, t, p) at known
longitude, latitude and time. These are also exactly the same data that should continue to be
archived in national oceanographic archives.

In particular, it cannot be over-emphasized that NONE of Reference Salinity Sg,
Absolute Salinity S, or Preformed Salinity S. should EVER be submitted to or stored in
national oceanographic databases. This resonates with present practice regarding
temperature; we archive the measured quantity, in situ temperature t, not the calculated
quantity, potential temperature 6. Similarly, just as potential temperature is not stored in
national databases, so too Conservative Temperature should NEVER be submitted to or
stored in such national databases. In short, such databases should store measured (not
calculated) quantities, and for this purpose, Practical Salinity is regarded as a measured
quantity.
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7. The 75-term expression V(S,.0.p) for specific volume

The computationally efficient 75-term polynomial for specific volume, \7(8 el p), is
described in Roquet et al. (2015), and is the function gsw_specvol(SA,CT,p) in the GSW
Oceanographic Toolbox. Seawater specific volume data was fitted in a “funnel” of data
points in (S A ©, p) space which is described in more detail in McDougall et al. (2003). The
“funnel” extends to a pressure of 8000 dbar. At the sea surface the “funnel” covers the full
range of temperature and salinity while for pressures greater than 6500 dbar, the maximum
Conservative Temperature of the fitted data is 10°C and the minimum Absolute Salinity is
30g kg™. That is, the 75-term fit has been performed over a region of parameter space
which includes water that is approximately 10°C warmer and 5g kg™ fresher in the deep
ocean than the seawater which exists in the present ocean.

The rms error of this 75-term approximation to the TEOS-10 density over the
oceanographic “funnel” is 0.0002 kg m~3; this can be compared with the rms uncertainty of
0.004 kg m™ of the underlying laboratory density data to which the TEOS-10 Gibbs function
was fitted. Similarly, the appropriate thermal expansion coefficient,

o = 19V
vE)@S
Ay

4

p

of the 75-term equation of state is different from the same thermal expansion coefficient
evaluated directly from TEOS-10 with an rms error in the “funnel” of 0.03x10°K™,
compared with the rms error of the thermal expansion coefficient of the laboratory data to
which the Feistel (2008) Gibbs function was fitted of 0.73x10°K™. In terms of the
evaluation of density gradients, the haline contraction coefficient evaluated from the 75-term
equation is many times more accurate than the thermal expansion coefficient.

In dynamical oceanography it is the thermal expansion and haline contraction
coefficients ® and B° which are the most important aspects of the equation of state since
the “thermal wind” is proportional to aeVp® - ,BGVDSA and the vertical static stability is
given in terms of the buoyancy frequency N by g™N? =¢°0, - f°(S,),- Hence for
dynamical oceanography the 75-term polynomial expression for specific volume retains
essentially the full accuracy of TEOS-10. The use of the 75-term polynomial expression for
specific volume has several advantages over using the exact formulation, namely

* it is a function of Conservative Temperature, so eliminating the need to be
continually converting between Conservative and in-situ temperatures in order
to evaluate density,

* it is computationally faster (by a factor of 4) to use the 75-term expression
gsw_specvol(SA,CT,p) rather than using gsw_specvol CT_exact(SA,CT,p)
which is based on the sum of the Gibbs functions of pure water (IAPWS-09) and
of sea salt TAPWS-08),

* ocean models will use this 75-term equation of state, and it is advantageous for
the fields of observational and theoretical oceanography to use the same
equation of state as ocean models.

The functions of the GSW Oceanographic Toolbox are listed on the next four pages, after
which section 8 begins on page 18.
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8. Changes to oceanographic practice under TEOS-10

For the past thirty years we have taken the “raw” data of Practical Salinity S, (PSS-78),
in situ temperature t (now ITS-90) and pressure p and we have used an algorithm to
calculate potential temperature € in order to analyze and publish water-mass characteristics
on the S, —@ diagram. On this S, — @ diagram we have been able to draw curved contours
of potential density using EOS-80.

Under TEOS-10 this practice has now changed:- density and potential density (and all
types of geostrophic streamfunction including dynamic height anomaly) are now not
functions of Practical Salinity S, but rather are functions of Absolute Salinity S, .

TEOS-10 also defines a new temperature variable, Conservative Temperature © , which
takes the place of potential temperature 6 (see section 5 above). Operationally, the
calculation of Conservative Temperature © as a function of (SA, t, p) under TEOS-10 is no
different in principle from the way potential temperature was calculated from (SP, t, p)
under EOS-80; in both cases a simple computer algorithm is called. Conservative
Temperature © has the advantage over € of more accurately representing the “heat
content” of seawater, and is also much closer (by a factor of a hundred) to being a
conservative variable than is potential temperature. Heat is exchanged between the ocean
and its atmosphere and ice boundaries as a flux of potential enthalpy which is exactly
Cg = 3991.867 957119 63 Jkg K™ times the density times the corresponding flux of ©.
The transport of potential enthalpy C%@ in the ocean, and in particular across ocean sections,
can be regarded as the transport of “heat” irrespective of whether there are non-zero fluxes
of mass and/or of salt across such ocean sections (IOC et al., 2010).

Under TEOS-10 is not possible to draw isolines of potential density on a S, -6
diagram. Rather, because of the spatial variations of seawater composition, a given value of
potential density defines an area on the S, —@ diagram, not a curved line. Hence for the
analysis and publication of ocean data under TEOS-10 we need to change from using the
Sp — 6 diagram which was appropriate under EOS-80, to using the S, —© diagram. Itis on
this S, —© diagram that the isolines of potential density can be drawn under TEOS-10.

Specific volume may be calculated from the sum of the Gibbs functions of pure water
(IAPWS-09, Feistel (2003)) and of salt (IAPWS-08, Feistel (2008)) using
gsw_specvol_CT_exact(SA,CT,p) or from the 75-term polynomial expression using
gsw_specvol(SA,CT,p). The errors involved with using the 75-term expression for specific
volume (or density) are much less than the uncertainty in the effect of seawater composition
on density, and are also much less than the uncertainty of the underlying laboratory density
data to which the TEOS-10 Gibbs function was fitted (IAPWS-08, Feistel (2008)). This
computationally efficient 75-term expression for specific volume is the obvious choice for
use in ocean models since it is a function of the model’s temperature variable, Conservative
Temperature. The highly accurate nature of the 75-term expression means that theoretical
studies, observational oceanography and ocean modeling can all be performed using the
same equation of state which is conveniently expressed in terms of Conservative
Temperature. This eliminates the need to continually transform from Conservative
Temperature back to in situ temperature in order to calculate density and its derivatives.

These advantages lead us to recommend the 75-term expression for general use by
oceanographers, including for observational studies, for ocean modelling and for theoretical
studies, thus ensuring consistency between these different branches of oceanography. The
GSW Oceanographic Toolbox provides many functions based on this 75-term equation of
state, including gsw_Nsquared(SA,CT,p) to evaluate the square of the buoyancy frequency,
gsw_enthalpy(SA,CT,p) to evaluate the specific enthalpy of seawater, and several functions
to evaluate various geostrophic streamfunctions. The geostrophic streamfunction to be used
for flow in an isobaric surface is gsw_geo_strf_dyn_height while that to be used in
approximately neutral surfaces (including potential density surfaces, w-surfaces and
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Neutral Density (") surfaces) is gsw_geo_strf_isopycnal. Also, it is this 75-term expression
for specific volume that will be the basis for updated algorithms for @-surfaces (Klocker et
al. (2010)) and Neutral Density " (Jackett and McDougall (1997)).

In summary, under EOS-80 we have to date used the observed variables (SP, t, p) to
first form potential temperature # and then we have analyzed water masses on the S, —6
diagram, and we have been able to draw curved contours of potential density on this same
Sp — 6 diagram. Under TEOS-10, the observed variables (SP, t, p), together with longitude
and latitude, are used to first form Absolute Salinity S, using gsw_SA_from_SP, and then
Conservative Temperature © is calculated using gsw_CT_from_t. Oceanographic water
masses are then analyzed on the S, —©® diagram (using gsw_SA_CT_plot), and potential
density contours can be drawn on this S, —® diagram using gsw_rho(SA,CT,p_ref).

The various oceanographic properties that rely on the equation of state have been
written in terms of S, and © in the GSW Oceanographic Toolbox, and all of the
oceanographic variables in common use (including geostrophic streamfunctions) have been
written using the 75-term expression for specific volume to ensure consistency between
ocean models, observational studies and theoretical work. The use of many of these
functions can be seen by running gsw_demao.

9. Ocean modelling using TEOS-10

Ocean models treat their salinity and temperature variables as being conservative, with
the choice of variables to date being Practical Salinity and potential temperature. Converting
ocean models to be TEOS-10 compatible requires several changes. The model’s temperature
variable needs to

(i) accurately represent the “heat content” per unit mass of seawater and

(ii) to be as conservative as possible under ocean mixing processes.

Conservative Temperature © has these properties whereas potential temperature 6 does
not. Fortunately it is relatively easy to change ocean models to have Conservative
Temperature as their temperature variable. With the expression for density being cast in
terms of Absolute Salinity S, and Conservative Temperature © as ﬁ(SA,G, p), the interior
of an ocean model can be written totally in terms of this one temperature variable, ®. In the
air-sea interaction module of an ocean model the sea-surface-temperature (SST) needs to be
evaluated for use in bulk air-sea flux formulae, and this is done by calling the function
gsw_pt_from_CT. This conversion from © to SST needs to done just at the sea surface in
the air-sea interaction module.

The current practice in numerical models is to treat salinity as a perfectly conserved
quantity in the interior of the ocean. In order to continue this practice the appropriate model
salinity variable is Preformed Salinity S.. Preformed Salinity and Absolute Salinity are
related to Sg and S. respectively by Eqns. (A.20.1) and (A.20.2) of the TEOS-10 Manual,
repeated here

5. = Sq(1-1R%), (5)
Sy = S.(1+F?), (6)
where
R5 6S;ﬂas Fé‘ _ [1+r1] R5

S;“as and m .

The Absolute Salinity Anomaly Ratio, R®= 852 /st s the ratio of the values of
Absolute Salinity Anomaly and Reference Salinity in the stored hydrographic atlas.

(7a, b)
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Because Preformed Salinity S. is designed to be a conservative salinity variable, blind to
the effects of biogeochemical processes, its evolution equation is in the conservative form
(see appendix A.21 of IOC et al. (2010)),

s, N aS,
dt - ’}/zvn.(’}/z KVnS*) + [D aZ ] . (8)
z

Here the over-tilde of S. indicates that this variable is the thickness-weighted average
Preformed Salinity, having been averaged between a pair of closely-spaced neutral tangent
planes. The material derivative on the left-hand side of Eqn. (8) is with respect to the sum of
the Eulerian and quasi-Stokes velocities of height coordinates (equivalent to the description
in appendix A.21 of IOC et al. (2010) in terms of the thickness-weighted mean horizontal
velocity and the mean dianeutral velocity), while the right-hand side of this equation is the
standard notation indicating that S. is being diffused along neutral tangent planes with the
diffusivity K and in the vertical direction with the diapycnal diffusivity D (and ¥, ! is the
average of the reciprocal of the vertical gradient of Neutral Density or locally-referenced
potential density). The model is initialized with values of Preformed Salinity using Eqn. (5)
based on observations of Practical Salinity and on the interpolated global observed data base
of RY; this is best done by calling gsw_Sstar_from_SP.

In order to evaluate density during the running of an ocean model, Absolute Salinity
must be evaluated based on the model’s primary salinity variable, Preformed Salinity, and
Eqn. (6). This can be done by carrying the following evolution equation for F?

dF° oF°
= Y, (1KY, )+ | DE |+ (RO - RO, 9
dt VYo (V2 BV 9z ) ®)
The model variable F° (note that F° = Sp/S. —1) is initialized based on observations of
R? = 552 / S2% and the use of Eqn. (7b); this is best done by calling gsw_Fdelta. Equation
(9) shows that F? is advected and diffused like any other tracer, but in addition, there is a

F%%s _ F9) which serves to restore the model variable

non-conservative source term 7
F% towards the observed value (found from gsw_Fdelta) with a restoring time 7 that can
be chosen to suit particular modeling needs (see the discussion in appendix A.20 of the
TEOS-10 Manual, IOC et al. (2010)).

In summary, the approach for handling salinity in ocean models suggested in I0C ef al.
(2010) and summarized here carries the evolution Eqns. (8) and (9) for S. and F%, while S A

is calculated from these two model variables at each time step according to

S, = &@&F5) (10)
It is this salinity, S A, Which is used as the argument for the model’s expression for density at
each time step of the model.

The Baltic Sea is somewhat of an exception because its compositional variations are not
due to biogeochemistry but to anomalous riverine input of dissolved salts which behave
conservatively. Preformed Salinity S. in the Baltic is equal to Absolute Salinity S,, which
implies that p =-1 and F°=0 in the Baltic Sea. Hence in the Baltic, an ocean model
simply puts S, =S, and the value of Absolute Salinity Anomaly ¢S, is immaterial during
the running of the model. Of course the values of ¢S, in the Baltic are important for
relating Absolute Salinity and Preformed Salinity to measured values of Practical Salinity
there. The discharges (mass fluxes) of river water and of Absolute Salinity should both
appear as source terms at the edges of the Baltic Sea in the model.

If an ocean model is to be run for only a short time (perhaps as long as a century) then it
may be sufficiently accurate to carry only one salinity variable, namely Absolute Salinity S, .
For longer integrations the neglect of the non-conservative biogeochemical source term
means that the model’s salinity variable S, will depart from reality. A more detailed
discussion of these points is available in appendix A.20 of IOC et al. (2010).
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In summary, the changes needed to make ocean models TEOS-10 compatible are

(1) use an equation of state in terms of S, and O, \7(8 el p), such as the 75-term
expression to be found in gsw_specvol(SA,CT,p),
(if) have Conservative Temperature © as the model’s temperature variable (note

that SST needs to be evaluated in the model’s air-sea flux module using
gsw_pt_from_CT at the sea surface only),

(iii)  incorporate the effects of the spatially variable seawater composition using the
techniques of appendix A.20 of IOC et al. (2010) as summarized above,

(iv)  restoring boundary conditions for ocean-only models can be imposed on the
model variables S. and O,

(v) model output salinities and temperatures are best made as Absolute Salinity S,
and Conservative Temperature ©, consistent with the variables which will be
published in oceanographic journals.

10. A guide to the GSW Oceanographic Toolbox

The key attributes of the three oceanographic variables S,, S. and © may be
summarized as follows. Preformed Salinity S. and Conservative Temperature © are the
ideal variables for representing the “salt content” and “heat content” of seawater in the
standard conservation equations of physical oceanography. However, the thermodynamic
properties of seawater (in particular, density) depend not on Preformed Salinity S., but
rather on Absolute Salinity S,. While Practical Salinity S, is relatively easy to measure
accurately, it should now be regarded as a stepping stone on the way to calculating the two
more attractive salinity variables, S, and S..

The GSW functions are listed on the central four pages of this document. The group of
functions “Practical Salinity (SP), PSS-78” contains routines for Practical Salinity in terms of
either conductivity C or conductivity ratio R, as well as their inverse functions. The input
temperature to these functions is in situ temperature (ITS-90), and the inverse algorithms are
iterated until the Practical Salinity is equal to the input value to within 2x107*, that is, to
machine precision. These functions incorporate a modified form of the extension of Hill et
al. (1986) to Practical Salinities between zero and 2. The modification ensures that the
algorithm is exactly PSS-78 for S, =22 and is continuous at S, =2. The function in this
group, gsw_SP_salinometer, calculates Practical Salinity from the two outputs of a
laboratory salinometer, namely R, and the bath temperature.

The second group delivers the three new oceanographic variables, Absolute Salinity S,,
Preformed Salinity S., and Conservative Temperature ®. The first two functions have
Practical Salinity Sp, pressure, longitude and latitude as input variables. Note that virtually
all of the functions which follow this second group require Absolute Salinity S, as an input.
Hence it is clear that when analyzing oceanic data, the very first function call must be to
gsw_SA_from_SP. Hence this function is the most fundamental in the GSW toolbox. This
function can be avoided only by ignoring the influence of the spatial variations of seawater
composition, in which case the remaining GSW functions would be called with Reference
Salinity S (given by calling gsw_SR_from_SP) in place of S,. The function
gsw_CT_from_t evaluates Conservative Temperature ©, as a function of Absolute Salinity
S, in situ temperature t and pressure p.

The third group contains just the function gsw_SA_CT_plot which plots the TEOS-10
version of the “T-5” diagram for a series of vertical profiles. The Conservative Temperature
at the freezing point for p =0 dbar, and user-selected potential density contours are also
displayed on this S, — © diagram using the 75-term expression for the density of seawater,
gsw_rho(SA,CT,p).
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The fourth grouping of functions has the heading “other conversions between
temperatures, salinities, entropy, pressure and height”. Some of these functions are the
reverse of those in the previous groups (namely gsw_SP_from_SA, gsw_SP_from_Sstar and
gsw_t_from_CT) while others perform familiar functions such as
gsw_pt_from_t(SA,t,p,p_ref) which evaluates the potential temperature of the “bottle”
(SA,t,p) referenced to the pressure p_ref.

The next group of functions (the right-hand side of the page), headed “specific volume,
density and enthalpy”, are all derived from the computationally-efficient 75-term expression
for specific volume, \7(8 el p) of Roquet et al. (2015). This group includes the function
gsw_rho to evaluate both density and potential density, and gsw_alpha to evaluate the
relevant thermal expansion coefficient. This 75-term expression for specific volume is
essentially as accurate as the full TEOS-10 expression, and this 75-term expression has the
advantage that its temperature argument is Conservative Temperature. The functions
gsw_enthalpy and gsw_enthalpy_diff are used when evaluating various geostrophic
streamfunctions, since under isentropic and isohaline conditions, enthalpy is the pressure
integral of specific volume. The functions gsw_SA_from_rho and gsw_CT_from_rho are
essentially the inverse functions of the equation of state in that they return the Absolute
Salinity (or Conservative Temperature respectively) for given values of density, pressure
and either © or S, respectively.

The next group of three functions, headed “vertical stability”, delivers variables which
are defined in terms of the vertical gradients of S, and © on an individual vertical profile,
and so are inherently water column properties. These functions deliver the square of the
buoyancy frequency (gsw_Nsquared), the Turner angle, and the ratio of the vertical gradient
of potential density to the vertical gradient of locally-referenced potential density.

The following group is for calculating four different geostrophic streamfunctions, and
the acoustic travel time for sound up and down a vertical water column. All of these GSW
geostrophic streamfunction functions have S, and © as their input salinity and
temperature. It is important to realize that a particular geostrophic streamfunction is only
accurate when used in the surface for which it is derived. For example, dynamic height
anomaly is the geostrophic streamfunction in an isobaric surface while the Montgomery
streamfunction is the geostrophic streamfunction in a specific volume anomaly surface.
When one is working in some type of approximately neutral surface, the Cunningham
geostrophic streamfunction is more accurate than the Montgomery streamfunction, while
the “isopycnal” geostrophic streamfunction gsw_geo_strf_isopycnal of McDougall and
Klocker (2010) is the most accurate (see Figures 1, 2 and 3 of McDougall and Klocker (2010)).
The functions in this group all use the 75-term polynomial for specific volume.

The next group contains just the one function, gsw_geostrophic_velocity, which
calculates the geostrophic velocity in a given surface with respect to the velocity in a
reference surface. This function should be called with dynamic height anomaly if the surface
in which the geostrophic velocity is required is an isobaric surface.  Similarly,
gsw_geostrophic_velocity should be called with the “isopycnal” geostrophic streamfunction
gsw_geo_strf_isopycnal if the surface in which the geostrophic velocity is evaluated is an
approximately neutral surface (such as a Neutral Density surface (Jackett and McDougall
(1997)), an w-surface (Klocker et al. (2010)) or a potential density surface).

The next group of functions is concerned with various neutral attributes of the seawater
equation of state and returns properties such as the ratio of the gradient of Conservative
Temperature in a potential density surface to that in the neutral tangent plane.

The following group “derivatives of entropy, CT and pt” contains functions which use
the full TEOS-10 Gibbs function and have a variety of input temperatures, appropriate to the
variable being differentiated. The outputs of these functions are used, for example, in
evaluating the amount of non-conservative production associated with each variable
(entropy, CT and pt) when two seawater parcels are mixed.
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The following four groups give properties of ice, of sea ice, and of the thermodynamic
equilibrium between seawater and either ice or sea ice. These four groups are followed by a
group of functions which gives the latent heats of melting and of evaporation.

The next group “spiciness” delivers the spiciness variable for three different reference
pressures. Spiciness is a measure of the change of water-mass properties along a potential
density surface.

The group, “planet Earth properties”, delivers straightforward properties of the rotating
planet of the solar system on which we presently reside.

The group “TEOS-10 constants” simply returns various constants which are basic to
TEOS-10. Note that the constant gsw_C3515 is not a fundamental constant of either PSS-78
or TEOS-10 but is required to convert a measured conductivity value C into conductivity
ratio R (which is a fundamental property of PSS-78).

The group “dissolved gases” contains algorithms for the solubility of various gases.
This is not work that resulted from SCOR/IAPSO Working Group 127, nor have these
algorithms been approved by IOC. These algorithms are included in the GSW
Oceanographic Toolbox as they seem to be oceanographic best practice.

The two groups on the right-hand side of this third page contain only functions
evaluated using the full TEOS-10 Gibbs function (being the sum of the IAPWS-09 and
IAPWS-08 Gibbs functions). The group of GSW functions, headed “specific volume, density
and enthalpy in terms of CT, based on the exact Gibbs function” delivers exactly the same
outputs as the corresponding group on page one based on the 75-term expression for specific
volume, \7(8 el p), having also the same inputs as those functions. The functions in this
group can be used to confirm that the use of the 75-term computationally efficient equation
of state does not noticeably degrade any output property.

The group of GSW functions headed “laboratory functions, for use with densimeter
measurements”. These functions have in situ temperature t as their input temperature
variable. All three functions in this group use the full TEOS-10 Gibbs function, namely the
sum of the Gibbs functions of IAPWS-09 and IAPWS-08 (rather than the 75-term expression
for specific volume).

The fourth page of the GSW algorithms list include the “basic thermodynamic
properties in terms of in-situ t, based on the exact Gibbs function” in which can be found
many of the basic thermodynamic properties of seawater. Each of these functions have in
situ temperature as the input temperature variable. The next group contains the library
functions used by GSW. These are internal functions which are not intended to be called by
users. There is nothing stopping a skilled operator using these programs, but unless the user
is confident, it is safer to access these library routines via one of the public functions; for
example, there is little or no checking on the array sizes of the input variables in these
internal library functions. The data set gsw_data_v3_0 must not be tampered with.

The function gsw_check_functions confirms that the GSW Oceanographic Toolbox is
correctly installed and that there are no conflicts. This function runs three stored vertical
profiles through of all the other GSW functions, and checks that the outputs are within
predefined limits of the correct answers. These pre-defined limits are a factor of
approximately a hundred larger than the errors expected from numerical round-off (at the
standard double precision of MATLAB). The user may want to run gsw_check_functions
periodically to confirm that the software remains uncorrupted. gsw_demo runs and
displays results from several of the GSW functions, so introducing the user to some of the
features of the Toolbox.

The GSW Oceanographic Toolbox is designed to be comprehensive and to be installed
in its entirety, even though most users may use relatively few of the functions for routine
oceanographic analyses. For example, the most basic use of the GSW Oceanographic
Toolbox would begin with a data set of (SP, t, p) at known longitudes and latitudes. The
first steps are to call gsw_SA_from_SP and then gsw_CT_from_t to convert to a data set of
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(S A O, p). With the data set in this form, water masses may be analyzed accurately on the
S, —© diagram, and in situ density and potential density are available by calling the
computationally-efficient 75-term expression for density, gsw_rho, with the pressure input
being the in situ sea pressure p, and the reference sea pressure p_ref, respectively. That is,
in situ density is evaluated as gsw_rho(SA,CT,p) and potential density with respect to the
reference pressure p_ref is given by gsw_rho(SA,CT,p_ref).
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12. Recommended nomenclature, symbols and units in
oceanography

This section 12 is from appendix L of the TEOS-10 Manual, IOC et al. (2010).

L.1 Recommended nomenclature

The strict SI units of Absolute Salinity, temperature and pressure are kg kg™, Absolute
Temperature in K and Absolute Pressure P in Pa. These are the units predominantly
adopted in the SIA computer software for the input and output variables. If oceanographers
were to adopt this practice of using strictly SI quantities it would simplify many
thermodynamic expressions at the cost of using unfamiliar units.

The GSW Oceanographic Toolbox (appendix N) adopts as far as possible the currently
used oceanographic units, so that the input variables for all the computer algorithms are
Absolute Salinity in S, in g kg™, temperature in °C and pressure as sea pressure in dbar.
The outputs of the functions are also generally consistent with this choice of units, but some
variables are more naturally expressed in SI units.

It seems impractical to recommend that the field of oceanography fully adopt strict basic
SI units. It is however very valuable to have the field adopt uniform symbols and units, and
in the interests of achieving this uniformity we recommend the following symbols and units.
These are the symbols and units we have adopted in the GSW Oceanographic Toolbox.

Table L.1. Recommended Symbols and Units in Oceanography

Quantity Symbol | Units Comments

Chlorinity Cl g kg™ Chlorinity is defined as the following mass
fraction; it is 0.328 523 4 times the ratio of the
mass of pure silver required to precipitate all
dissolved chloride, bromide and iodide in seawater
to the mass of seawater.

-1

Standard Ocean Sso g kg 35.165 04 g kg being exactly 35 Upg,

Reference Salinity corresponding to the standard ocean Practical
Salinity of 35.

freezing temperatures tf o |°C in situ and conservative values, each as a function
of S, and p.

Absolute Pressure P Pa When Absolute Pressure is used it should always
be in Pa, not in Mpa nor in dbar.

sea pressure. Sea pressure | p dbar Equal to p- PP and usually expressed in dbar not

is the pressure argument Pa.

to all the

GSW Toolbox functions.
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gauge pressure. Gauge poauee dbar Equal to the Absolute Pressure P minus the local

pressure (also called atmospheric pressure at the time of the instrument

applied pressure) is calibration, and expressed in dbar not Pa. Sea

sometimes reported from pressure p is preferred over gauge pressure p%%,

ship-born instruments. as p is the argument to the seawater Gibbs
function.

reference pressure Pr dbar The value of the sea pressure p to which potential
temperature and/or potential density are
referenced.

one standard atmosphere | R, Pa exactly 101 325 Pa (= 10.1325 dbar)

isopycnal slope ratio r 1 . a°(p)/B°(p)

a®(p,)/B°(p,)

Stability Ratio R, 1 R, = G)@z/ﬂ@(SA)Z ~ aﬁ’gz/ﬂe(SA)z .

isopycnal temperature e 1 o _ . PN

gra%)i/ent ratio i © 6° = r[R,-1]/[R,~r]: V,0 =6"V,0

Practical Salinity Sp 1 Defined in the range 2<S, <42 by PSS-78 based
on measured conductivity ratios.

Reference Salinity Sk gkgt Reference-Composition Salinity (or Reference
Salinity for short) is the Absolute Salinity of
seawater samples that have Reference
Composition. At S, =35, S isexactly u,S,.
while in the range 2<s, <42 S; = UpsS; .

Absolute Salinity S,=5% | gkg? Sp =Sg+ 0S5 = UpsSp + 05,

(This is the salinity Absolute Salinity is the sum of S on the Millero

argument of all the . et al. (2008a) Reference-Salinity Scale and the

GSW Toolbox functions.) Absolute Salinity Anomaly. The full symbol for
S, is SA™™ as it is the type of absolute salinity
which delivers the best estimate of density when
used as the salinity argument of the TEOS-10
Gibbs function. Another name for S, = S&™ is
“Density Salinity”.

Absolute Salinity OSa gkg® 8S, =S, — Sy, the difference between Absolute

Anomaly Salinity, S, = S/‘iens, and Reference-Composition
Salinity. In terms of the full nomenclature of
Pawlowicz et al. (2010), Wright et al. (2010b) and
appendix A.4 herein, the Absolute Salinity
Anomaly §S, is OSE™.

“Preformed Absolute S. g kg™ Preformed Absolute Salinity S. is a salinity

Salinity”, variable that is designed to be as conservative as
often shortened to pgssible, by _rempving the estimated
biogeochemical influences on the seawater

“Preformed Salinity” composition from other forms of salinity (see
Pawlowicz et al. (2010), Wright et al. (2010b)).

“Solution Absolute SZ"'” g kg™ The mass fraction of non-H,O constituents in

Salinity”, often shortened seawater after it has been brought to chemical

to “Solution Salinity” equilibrium at t = 25°C and p =0 dbar (see
Pawlowicz et al. (2010), Wright et al. (2010b)).

“Added-Mass Salinity” Shes g kg™ S99 _g_ is the estimated mass fraction of non-
H,O constituents needed as ingredients to be added
to Standard Seawater which when mixed and
brought to chemical equilibrium at t = 25°C and

p =0 dbar results in the observed seawater
composition.
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temperature t °C

Absolute Temperature T K TIK=T,/K+t/ (C) =273.15 +1t/ (°C)

temperature derivatives K When a quantity is differentiated with respect to in
situ temperature, the symbol T is used in order to
distinguish this variable from time.

Celsius zero point To K T, =273.15K

potential temperature o °C Defined implicitly by Eqgn. (3.1.3)

Conservative Temperature | © °C Defined in Eqn. (3.3.13 as exactly potential
enthalpy divided by ¢ .

the “specific heat”, for use | .0 Jkg™ K™ cp =3991.867 957 119 63 Jkg K™, This 15-digit

with Conservative P number is defined to be the exact value of c® .

Temperature c) is the ratio of potential enthalpy h° to ©.

combined standard Ue Varies

uncertainty

enthalpy H J

specific enthalpy h Jkgt h=u+(p+R)v.
Here p and P, must be in Pa not dbar.

specific potential enthalpy | h° Jkg™ specific enthalpy referenced to zero sea pressure,
hO = h(SAre[SAvtn p: pr :O]1 pr :O)

specific isobaric heat c Jkg@ K | ¢ = oh/aT|

capacity P P Sa:P

internal energy U J

specific internal energy u Jkg™

specific isochoric heat c Jkg" K™ | ¢, = Ju/aT |

capacity ' Sav

Gibbs function G J

(Gibbs energy)

specific Gibbs function g Jkgt

(Gibbs energy)

specific Helmholtz energy | f Jkg™

unit conversion factor for | ypg gkg™ Upg = (35.16504/35) gkg™* ~ 1.004 715... gkg ™

salinities The first part of this expression is exact. This
conversion factor is an important and invariant
constant of the 2008 Reference-Salinity Scale
(Millero et al. (20084a)).

entropy ) JK?

specific entropy n Jkg™ K™ | In many other publications the symbol s is used for
specific entropy.

density p kgm™

density anomaly o kgm™ p(Sa.t,0) — 1000 kg m™

potential density anomaly | ¢, kgm™ p(SA: H[SA,t, P, Pr]: pr) — 1000 kg m™ where

referenced to a sea _

pressure of 2000 dbar P = 2000 dbar

potential density anomaly | o, kgm™ p(Sa. 0[Sa.t. p.p,]. p,) — 1000 kg m™ where

referenced to a sea _

pressure of 4000 dbar P, = 4000 dbar

thermal expansion o ) o1 4

coefficient with respect to K v aV/aT|5AvP TP a'0/8T|5A~P

in situ temperature

thermal expansion 0 1 1 4

coefficient with respect to « K v 8v/86’|SAyp =P ap/a9|5/w)

potential temperature 8
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thermal expansion

@ ] o -1 -1 - _ -1
coefficient with respect to K v aV/a®|5/w P 8p/8®|SA'p
Conservative Temperature
]
saline contraction B kg gt _viv/as = 195/95
coefficient at constant in 99 A|T’p pop A|T"’
situ temperature Note that the units for 3" are consistent with Sa
being in g kg™
saline contraction B° kg g™ —viv/as = 9,/95
coefficient at constant A‘H*p P OP 1A ‘9"’
potential temperature Note that the units for /39 are consistent with Sp
being in g kg™
- - G) _ _ _
saline contraction B kg g™ —v 1av/asA‘eyp =+p lap/aSA‘e,p
coefficient at constant
Conservative Temperature Note that the units for ﬁ® are consistent with S
being in g kg™
isothermal compressibility | .t Pa’
isentropic and isohaline K Pa’
compressibility
chemical potential of W g™
water in seawater
chemical potential of sea S g™
salt in seawater
relative chemical potential | 4 Jg*
of (sea salt and water in) (09/0S,), , = — 4"
seawater
dissipation rate of kinetic | &€ Jkgts?
energy per unit mass =m?s?®
. - -1
adiabatic lapse rate r K Pa Lo _a _a| _a  _ (TOJ,Q)ﬂ
BPSAYH BPSA,@ aPSM an Sa.p c‘; B@SA'p
sound speed C ms*
specific volume v m*kg™’ v=pt
specific volume anomaly | § m® kg™
thermobaric coefficient T? K-lpat 19 = g9’/ %) JoP
based on & b ’ ( )/ Sa.0
thermobaric coefficient Tbe K-lpat TO = ﬂ@a(ae/ﬂe)/ap
based on © a0
cabbeling coefficient co K2 0 o o o A
based on & b Cp = 0o /39‘SA’p + 2%306 /aSA‘g’p —(%) B /BSA‘g,p
cabbeling coefficient co K2 o - 6 o. o o¥_ o
based on © b Co = 0o /ae‘SA‘p *2ie0a /BSA\@'p —(;’f@j 9 /GSA\Qp
buoyancy frequency N sl N2 = g(a®®,- 4%, ) = g(a’6,- 57Sa,)
neutral helicity H" m-3 defined by Egns. (3.13.1) and (3.13.2)
Neutral Density % — a density variable whose iso-surfaces are designed
g to be approximately neutral, i. e.
a°V,0 = V.S,
Neutral-Surface-Potential- | NSPV | g3 NSPV = —gp~fy! where fis the Coriolis
Vorticity parameter.
dynamic height anomaly vy m2s2 Pam®kg ™t = m?s?
Montgomery geostrophic pM m2s2 Pam®kg™ = m?s?

streamfunction
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PISH (Pressure-Integrated | yp’ kg s2 streamfunction for f times the depth-integrated
Steric Height) relative mass flux, see Egns. (3.31.1) — (3.31.5).
Coriolis parameter f 5! 1.458 42x10™*sing s, where ¢ is latitude
My is the mole-weighted average atomic weight
molar mass of Reference | Mg g mol™ of the constituents of Reference Seawater,
Seawater M, =31.403 821 8...g mol™*, from Millero et al.
(2008a).
. . ) 1 S, : :
molality of seasalt in Mgy mol kg™ Mgy = Zimi = M_m m; is the molality
Reference Seawater s A

of constituent i in Reference Seawater.

2 _ 2 _ .
valence factor of 52 . z? =)' Xz} =1.245 2898 where Z; is the

Reference Seawater charge of seawater constituent i which is present
at the mole fraction X; in Reference Seawater
(from Millero et al. (2008a)).

| =1img, 2% =1) mz?
ionic strength of I mol kg™ 2Msw 2 z' i
Reference Seawater = 0.622 644 9 my,,
_0.6226449 mol kg~ S,
0.031403 8218 il— SAi'
m, is the molality of constituent i in Reference
Seawater.
W
osmotic coefficient P 1 #(Sa.T.p) = 9(0.t, )~ " (Sa.t )
mgwR (T, +t)
where the molar gas constant,
R =8.314 472 Jmol™ K. See also Eqns. (2.14.1)
and (3.40.9) for an equivalent definition of @.
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TEOS-10 and GSW in a nutshell

In order to analyse oceanographic data under TEOS-10, the observed values of
Practical Salinity S, and in sifu temperature t need to be converted into
Absolute Salinity S, and Conservative Temperature ©, as follows,

Step 1. calculate Absolute Salinity, S,=gsw_SA_from_SP(SP, p, long, lat),
Step 2. calculate Conservative Temperature, © =gsw_CT_from_t(SA, t, p).

Having converted (Sp,t, p) to (SA,Q, p), the GSW functions listed on page 14
of this document are then used for analysing the data. The use of these GSW
functions ensures consistency between theoretical oceanography, observational
oceanography and ocean modelling.

Under TEOS-10, the S, — ©® diagram is the new “T-S” diagram. The above
Sp— O diagram was plotted using gsw_SA_CT_plot. The o0, potential
density anomaly contours were evaluated inside this function using
gsw_rho(SA,CT,2000). This same function can be used to evaluate in situ
density via gsw_rho(SA,CT,p).
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