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12.  Recommended  nomenclature,  symbols  and  units  in    
            oceanography    
  
  
This  section  12  is  from  appendix  L  of  the  TEOS-­‐‑10  Manual,  IOC  et  al.  (2010).    
  
  
  
L.1 Recommended nomenclature   
The   strict   SI   units   of   Absolute   Salinity,   temperature   and   pressure   are   1kg kg− ,   Absolute  
Temperature   in   K    and   Absolute   Pressure   P    in   Pa.      These   are   the   units   predominantly  
adopted  in  the  SIA  computer  software  for  the  input  and  output  variables.    If  oceanographers  
were   to   adopt   this   practice   of   using   strictly   SI   quantities   it   would   simplify   many  
thermodynamic  expressions  at  the  cost  of  using  unfamiliar  units.      

The  GSW  Oceanographic  Toolbox   (appendix  N)  adopts  as   far  as  possible   the  currently  
used   oceanographic   units,   so   that   the   input   variables   for   all   the   computer   algorithms   are  
Absolute  Salinity  in   AS   in   1g kg ,−   temperature  in   C°   and  pressure  as  sea  pressure  in  dbar.    
The  outputs  of  the  functions  are  also  generally  consistent  with  this  choice  of  units,  but  some  
variables  are  more  naturally  expressed  in  SI  units.      

It  seems  impractical  to  recommend  that  the  field  of  oceanography  fully  adopt  strict  basic  
SI  units.    It  is  however  very  valuable  to  have  the  field  adopt  uniform  symbols  and  units,  and  
in  the  interests  of  achieving  this  uniformity  we  recommend  the  following  symbols  and  units.    
These  are  the  symbols  and  units  we  have  adopted  in  the  GSW  Oceanographic  Toolbox.      
  
  
Table  L.1.  Recommended  Symbols  and  Units  in  Oceanography    

Quantity Symbol Units Comments 

Chlorinity Cl g kg–1 Chlorinity is defined as the following mass 
fraction; it is 0.328 523 4 times the ratio of the 
mass of pure silver required to precipitate all 
dissolved chloride, bromide and iodide in seawater 
to the mass of seawater.   
 

Standard Ocean 
Reference Salinity  

SOS  g kg–1 35.165 04 g kg–1 being exactly PS35 u , 
corresponding to the standard ocean Practical 
Salinity of 35.   

freezing temperatures f,ft Θ  ºC in situ and conservative values, each as a function 
of AS  and p.   

Absolute Pressure P Pa When Absolute Pressure is used it should always 
be in Pa, not in Mpa nor in dbar.   
 

sea pressure.  Sea pressure 
is the pressure argument 
to all the 
GSW Toolbox functions.   
 

p dbar Equal to 0P P−  and usually expressed in dbar not 
Pa.   
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gauge pressure.  Gauge 
pressure (also called 
applied pressure) is 
sometimes reported from 
ship-born instruments.   

gaugep  dbar Equal to the Absolute Pressure P minus the local 
atmospheric pressure at the time of the instrument 
calibration, and expressed in dbar not Pa.  Sea 
pressure p is preferred over gauge pressure gauge ,p  
as p is the argument to the seawater Gibbs 
function.    

reference pressure  rp  dbar The value of the sea pressure p to which potential 
temperature and/or potential density are 
referenced.   

one standard atmosphere  0P  Pa exactly 101 325 Pa  (= 10.1325 dbar)  
isopycnal slope ratio  r  1 ( ) ( )

( ) ( )r r

p p
r

p p
α β
α β

Θ Θ

Θ Θ=    

Stability Ratio  Rρ  1 ( ) ( )A A .z zz zR S Sθ θ
ρ α β α θ βΘ Θ= Θ ≈    

isopycnal temperature 
gradient ratio  

GΘ  1 1G r R R rρ ρ
Θ ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ ;  nGσ

Θ∇ Θ = ∇ Θ   

Practical Salinity PS  1 Defined in the range P2 42S< <  by PSS-78 based 
on measured conductivity ratios.   

Reference Salinity RS  g kg-1 Reference-Composition Salinity (or Reference 
Salinity for short) is the Absolute Salinity of 
seawater samples that have Reference 
Composition.  At PS  = 35, RS  is exactly  PS P .u S  
while in the range P2 42S< <  R PS P .S u S≈    

Absolute Salinity  
(This is the salinity 
argument of all the  
GSW Toolbox functions.)   

dens
A AS S=  g kg-1 A R A PS P AS S S u S Sδ δ= + ≈ +   

Absolute Salinity is the sum of RS  on the Millero 
et al. (2008a) Reference-Salinity Scale and the 
Absolute Salinity Anomaly.  The full symbol for 
AS  is dens

AS  as it is the type of absolute salinity 
which delivers the best estimate of density when 
used as the salinity argument of the TEOS-10 
Gibbs function.  Another name for dens

A AS S=  is 
“Density Salinity”.   

Absolute Salinity 
Anomaly  

ASδ  g kg-1 A A RS S Sδ = − , the difference between Absolute 
Salinity, dens

A A ,S S=  and Reference-Composition 
Salinity.   In terms of the full nomenclature of 
Pawlowicz et al. (2010), Wright et al. (2010b) and 
appendix A.4 herein, the Absolute Salinity 
Anomaly ASδ  is dens

RSδ .   
“Preformed Absolute  
  Salinity”,  

often shortened to 

“Preformed Salinity”  

*S  g kg-1 Preformed Absolute Salinity *S  is a salinity 
variable that is designed to be as conservative as 
possible, by removing the estimated 
biogeochemical influences on the seawater 
composition from other forms of salinity (see 
Pawlowicz et al. (2010), Wright et al. (2010b)).  

“Solution Absolute 
Salinity”, often shortened 
to “Solution Salinity”  

soln
AS  g kg-1 The mass fraction of non-H2O constituents in 

seawater after it has been brought to chemical 
equilibrium at t  = 25 C°  and p  = 0 dbar (see 
Pawlowicz et al. (2010), Wright et al. (2010b)).  

“Added-Mass Salinity”  add
AS  g kg-1 

add
A RS S−  is the estimated mass fraction of non-

H2O constituents needed as ingredients to be added 
to Standard Seawater which when mixed and 
brought to chemical equilibrium at t  = 25 C°  and 
p  = 0 dbar results in the observed seawater 

composition.  
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temperature  t ºC  
Absolute Temperature  T K ( ) ( )0/ K / K / C 273.15 / CT T t t≡ + ° = + °  
temperature derivatives   T K When a quantity is differentiated with respect to in 

situ temperature, the symbol T is used in order to 
distinguish this variable from time.   

Celsius zero point   0T  K 0 273.15 KT ≡  
potential temperature   θ  ºC Defined implicitly by Eqn. (3.1.3) 
Conservative Temperature   Θ  ºC Defined in Eqn. (3.3.1) as exactly potential 

enthalpy divided by 0
pc .  

the “specific heat”, for use 
with Conservative 
Temperature  

0
pc  J kg–1 K–1 0 1 13991.867 957 119 63 Jkg K .pc

− −≡   This 15-digit 
number is defined to be the exact value of 0

pc .   
0
pc is the ratio of potential enthalpy 0h  to Θ . 

combined standard 
uncertainty  

uc Varies   

enthalpy  H J  
specific enthalpy h J kg–1 ( )0 .h u p P v= + +    

Here p and 0P  must be in Pa not dbar.   

specific potential enthalpy 
 

h0 J kg–1 specific enthalpy referenced to zero sea pressure,  

[ ]( )0
A A r r, , , , 0 , 0h h S S t p p pθ= = =   

specific isobaric heat 
capacity 
 

pc  J kg–1 K–1 
A,p S pc h T= ∂ ∂    

 
internal energy  U J  
specific internal energy u J kg–1  
specific isochoric heat 
capacity vc  J kg–1 K–1 

A,v S vc u T= ∂ ∂    

 
Gibbs function  
(Gibbs energy)  

G J  

specific Gibbs function 
(Gibbs energy)  

g J kg–1  

specific Helmholtz energy f J kg–1  
unit conversion factor for 
salinities 

PSu  g kg–1 1 1
PS (35.16504 35) gkg 1.004 715... gkgu − −≡ ≈  

The first part of this expression is exact.  This 
conversion factor is an important and invariant 
constant of the 2008 Reference-Salinity Scale 
(Millero et al. (2008a)).   

entropy  Σ    J K–1  
specific entropy η  J kg–1 K–1 In many other publications the symbol s is used for 

specific entropy.   
density  ρ  kg m–3  
density anomaly  tσ  kg m–3 ( )A, ,0S tρ  – 1000 kg m–3  
potential density anomaly 
referenced to a sea 
pressure of 2000 dbar  

2σ  kg m–3 [ ]( )A A r r, , , , ,S S t p p pρ θ  – 1000 kg m-3 where 

r 2000 dbarp =  
potential density anomaly 
referenced to a sea 
pressure of 4000 dbar  

4σ  kg m–3 [ ]( )A A r r, , , , ,S S t p p pρ θ  – 1000 kg m-3 where 

r 4000 dbarp =  

thermal expansion 
coefficient with respect to 
in situ temperature 

tα  K–1 
A A

1 1
, ,/ /S p S pv v T Tρ ρ− −∂ ∂ = − ∂ ∂  

thermal expansion 
coefficient with respect to 
potential temperature θ   

θα   K–1 
A A

1 1
, ,/ /S p S pv v θ ρ ρ θ− −∂ ∂ = − ∂ ∂  
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thermal expansion 
coefficient with respect to 
Conservative Temperature 
Θ   

αΘ  K–1 
A A

1 1
, ,/ /S p S pv v ρ ρ− −∂ ∂Θ = − ∂ ∂Θ  

saline contraction 
coefficient at constant in 
situ temperature  
 

tβ  kg g–1 

 

1 1
A , A ,/ /T p T pv v S Sρ ρ− −− ∂ ∂ = ∂ ∂   

Note that the units for tβ  are consistent with SA 
being in g kg-1.  

saline contraction 
coefficient at constant 
potential temperature  
 

θβ   kg g–1 

 

1 1
A , A ,/ /p pv v S Sθ θρ ρ− −− ∂ ∂ = ∂ ∂   

Note that the units for θβ  are consistent with SA 
being in g kg-1.  

saline contraction 
coefficient at constant 
Conservative Temperature  
 

β Θ  kg g–1 

 

1 1
A , A ,/ /p pv v S Sρ ρ− −

Θ Θ− ∂ ∂ = + ∂ ∂   

Note that the units for β Θ  are consistent with SA 
being in g kg-1.  

isothermal compressibility  tκ   Pa–1  
 

isentropic and isohaline 
compressibility  

κ   
 

Pa–1  
 

chemical potential of 
water in seawater 

Wµ  J g–1  
 

chemical potential of sea 
salt in seawater 

Sµ  J g–1  
 

relative chemical potential 
of (sea salt and water in) 
seawater 

µ  J g–1 
 ( ) S W

A ,t pg S µ µ∂ ∂ = −  

 
dissipation rate of kinetic 
energy per unit mass 
 

ε  J kg–1 s–1  
 = m2 s–3 

 

adiabatic lapse rate  Γ  K Pa–1   

  
Γ = ∂t

∂P SA ,θ

= ∂t
∂P SA ,Θ

= ∂t
∂P SA ,η

= ∂v
∂η SA , p

=
T0 +θ( )

cp
0

∂v
∂Θ SA , p

 

sound speed  c   m s–1  
specific volume  v  m3 kg–1 1v ρ−=   
specific volume anomaly  δ  m3 kg–1  
thermobaric coefficient 
based on θ    bT

θ  1 1K Pa− −  ( )
A

b
,S

T Pθ θ θ θ

θ
β α β= ∂ ∂  

thermobaric coefficient 
based on Θ   bT

Θ  1 1K Pa− −  ( )
A

b
,S

T Pβ α βΘ Θ Θ Θ

Θ
= ∂ ∂  

cabbeling coefficient 
based on θ    bC

θ  2K−  
A

2

b A A, , ,
2

S p p p
C S S

θ θ
θ θ

θ θ θ θα α
β βθ θ

α θ α β⎛ ⎞= ∂ ∂ + ∂ ∂ − ∂ ∂⎜ ⎟⎝ ⎠
 

cabbeling coefficient 
based on Θ   bC

Θ  2K−  
A

2

b A A, , ,
2

S p p p
C S Sα α

β β
α α β

Θ Θ

Θ Θ
Θ Θ Θ Θ

Θ Θ
⎛ ⎞= ∂ ∂Θ + ∂ ∂ − ∂ ∂⎜ ⎟⎝ ⎠

 

buoyancy frequency N  1s−  ( ) ( )2
A Az zz zN g S g Sθ θα β α θ βΘ Θ= Θ − = −  

neutral helicity nH  3m−  defined by Eqns. (3.13.1) and (3.13.2)  

Neutral Density  nγ  kg m–3 a density variable whose iso-surfaces are designed 
to be approximately neutral, i. e. 

A.Sγ γα βΘ Θ∇ Θ ≈ ∇  

Neutral-Surface-Potential-
Vorticity 

NSPV 3s−  1 n
zNSPV g fρ γ−= −  where f is the Coriolis 

parameter.  
dynamic height anomaly  Ψ  2 2m s−  3 1 2 2Pam kg m s− −=  
Montgomery geostrophic 
streamfunction  

MΨ  2 2m s−  3 1 2 2Pam kg m s− −=  
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PISH (Pressure-Integrated 
Steric Height)  

′Ψ  kg s-2 streamfunction for  f  times the depth-integrated 
relative mass flux, see Eqns. (3.31.1) – (3.31.5).  

Coriolis parameter  f  1s−  4 11.458 42 10 sin sx φ− − , where φ  is latitude  
 
molar mass of Reference 
Seawater  
 

 
SM  

 

 g mol−1  
SM  is the mole-weighted average atomic weight 

of the constituents of Reference Seawater, 

  MS = 31.403 821 8... g mol−1 , from Millero et al. 
(2008a).   

 
molality of seasalt in 
Reference Seawater  
 
 

 
SWm  

 
mol kg–1 

  
mSW = mii∑ = 1

MS

SA

1− SA( ) .     mi  is the molality 

of constituent  i  in Reference Seawater.   

 
valence factor of 
Reference Seawater  
 
 

 
2Z  

 
1   

Z 2 = XiZi
2

i∑ ≡ 1.245 289 8  where  Zi  is the  

charge of seawater constituent  i  which is present 
at the mole fraction  Xi  in Reference Seawater 
(from Millero et al. (2008a)).  

 
ionic strength of 
Reference Seawater  
 
 

 
I 

 
mol kg–1 

  

I = 1
2 mSW Z 2 = 1

2 mii∑ Zi
2

= 0.622 644 9 mSW

≈ 0.622 644 9
0.031 403 821 8

mol kg−1 SA

1− SA( ) .

 

 mi  is the molality of constituent  i  in Reference 
Seawater.   

 
osmotic coefficient 
 
 

 
φ 

 
1 ( ) ( ) ( )

( )
W

A
A

SW 0

0, , , ,
, ,

g t p S t p
S T p

m R T t
µ

φ
−

=
+

  

where the molar gas constant,  
R = 8.314 472 J mol–1 K–1.  See also Eqns. (2.14.1) 
and (3.40.9) for an equivalent definition of .φ    
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