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Notes on the function gsw_IPV_vs_fNsquared_ratio(SA, CT, p)

This function gsw_IPV_vs_fNsquared_ratio(SA,CT,p) evaluates the ratio of the
planetary isopycnal-potential-vorticity, IPV, to fN 2 using the 75-term polynomial
expression for specific volume is discussed in Roquert et al. (2015) and in appendix A.30
and appendix K of the TEOS-10 Manual (IOC et al. (2010)). For dynamical oceanography
we may take the 75-term polynomial function expression for specific volume as essentially
reflecting the full accuracy of TEOS-10.

This function gsw_IPV_vs_fNsquared_ratio(SA,CT,p) evaluates the expression in Eqn.
(3.20.5), namely

PV _ —gpp® _ BO(p)[Ro/r-Y

= = , (3.20.5)
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where the stability ratio R, is
a0
R, = ———, (3.15.1)
g 'BG (SA)Z

and the isopycnal slope ratio r (obtainable from gsw_isopycnal_slope_ratio) is given by

_ @°(54.0.0)/5°(54.0.p)
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(3.17.2)
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3.20 Potential vorticity

Planetary potential vorticity is the Coriolis parameter f times the vertical gradient of a
suitable variable. Potential density is sometimes used for that variable but using potential
density (i) involves an inaccurate separation between lateral and diapycnal advection
because potential density surfaces are not a good approximation to neutral tangent planes
and (ii) incurs the non-conservative baroclinic production term of Eqn. (3.13.4). Using
approximately neutral surfaces, “ans”, (such as Neutral Density surfaces) provides an
optimal separation between the effects of lateral and diapycnal mixing in the potential
vorticity equation. In this case the potential vorticity variable is proportional to the
reciprocal of the thickness between a pair of closely spaced approximately neutral
surfaces.
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The evolution equation for planetary potential vorticity is derived by first taking the
epineutral “divergence” V_ - of the geostrophic relationship from Eqn. (3.12.1), namely
fv = gkapz. The projected “divergences” of a two-dimensional vector a in the
neutral tangent plane and in an isobaric surface, are V -a =V,-a+a,-V .z and
V,-a =V,-a+a,-V z from which we find (using Eqn. (3.12.6), V.2 -V z = V P/P,)

V,-a =V, a+a,-V,P/P,. (3.20.1)
Applying this relationship to the two-dimensional vector fv = gk x V,7 we have
V(W) = 9V, (kxV,z) + v, -V,P/R, = 0. (3.202)

The first part of this expression can be seen to be zero by simply calculating its
components, and the second part is zero because the thermal wind vector v, points in the
direction kxV P (see Eqn. (3.12.3)). It can be shown that V, ( fv) = 0 in any surface r
which contains the line VP xVp.

Eqn. (3.20.2), namely V, ( fv) = 0, can be interpreted as the divergence form of the
evolution equation of planetary potential vorticity since

v,-(v) = v, {‘;"J 0, (3.20.3)

where q = fy, is the planetary potential vorticity, being the Coriolis parameter times the
vertical gradient of Neutral Density. This instantaneous equation can be averaged in a
thickness-weighted sense in density coordinates yielding

(§0) (v

w7 =

where the double-primed quantities are deviations of the instantaneous values from the
thickness-weighted mean quantities. Here the epineutral eddy flux of planetary potential
vorticity per unit area has been taken to be down the epineutral gradient of § with the
epineutral diffusivity K. The thickness-weighted mean planetary potential vorticity is

N
=y |—

ZUZJ ,
and the averaging in the above equations is consistent with the difference between the
thickness-weighted mean velocity and the velocity averaged on the Neutral Density
surface, V—V (the bolus velocity), being V-V = Kann((j), since Eqn. (3.20.4) can be
written as 'V, -(f\?) =V, -(f;lKVnd while the average of Eqn. (3.20.3) is V, -(f\?) =0.

The divergence form of the mean planetary potential vorticity evolution equation,
Eqn. (3.20.4), is quite different to that of a normal conservative variable such as Absolute
Salinity or Conservative Temperature in that (i) neither the vertical diffusivity nor the
dianeutral velocity makes an appearance, and (ii) there is no temporal tendency term in

the equation.
The mean planetary potential vorticity equation (3.20.4) may be put into the advective

-V -(7;1Kvna) ) (3.20.4)

- f7,, (3.20.5)

form by subtracting § times the mean continuity equation,

(1)) 5
LiJ ‘v (V)+~—Z:o, (3.20.6)
}/z n 7/2 }/Z
from Eqn. (3.20.4), yielding
6| +9-v,§ - 7zvn.(7z-lKvnq) + Ge, (3.20.7)
or
G| +0-v,§ + 6, = d—? = 7,9, (7,°KV,4) + (d), (3.20.8)
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In this form, it is clear that potential vorticity behaves like a conservative variable as far as
epineutral mixing is concerned, but it is quite unlike a normal conservative variable as far
as vertical mixing is concerned.

If § were a normal conservative variable the last term in Eqn. (3.20.8) would be
D(ﬁz)zwhere D is the vertical diffusivity. The term that actually appears in Eqn. (3.20.8),
dé) , is different to (Dq ) by (Gé - Dg, ) = f(é}/z D;/ZZ) . Equation (A.22.4) for the

mean dianeutral velocity & can be expressed as €~ D, + Dy, /7 7, if the following three
aspects of the non-linear equation of state are ignored; (1) cabbeling and thermobaricity,
(2) the vertical variation of the thermal expansion coefficient and the saline contraction
coefficient, and (3) the vertical variation of the integrating factor b(x, Y, Z) of Eqgns. (3.20.10)
- (3.20.15) below. Even when ignoring these three different implications of the nonlinear
equation of state, the evolution equations (3.20.7) and (3.20.8) of § are unlike normal
conservation equations because of the extra term

(Ge-Dg,), = f(e7, - D7), = f(D,7,), = (D,), (3.20.9)
on their right-hand sides. This presence of this additional term can result in “unmixing”
of q in the vertical. Consider a situation where both g and o are locally linear functions
of S down a vertical water column, so that the S —@§ and S, — © diagrams are both
Iocally straight lines, exhibiting no curvature. Imposmg a large : amount of vertical mixing
at one height (e. g. a delta function of D) will not change the S o) diagram because of
the zero S AT ® curvature (see the water-mass transformatlon equation (A.23.1)).
However, the additional term (Dzd)z of Eqn. (3.20.9) means that there will be a change in
g of ( q) = 4D, +G,D, =~ GD,, along the neural tangent plane (that is, in Eqn. (3.20.7)).
This is § times a negatlve anomaly at the central height of the extra vertical diffusion, and
is § times a positive anomaly on the flanking heights above and below the central height.
In this way, a delta function of extra vertical diffusion induces structure in the initially
straight S A — 0 line which is a telltale sign of “unmixing”.

This planetary potential vorticity variable, = f7,, is often mapped on Neutral
Density surfaces to give insight into the mean circulation of the ocean on density surfaces.
The reasoning is that if the influence of dianeutral advection (the last term in Eqn. (3.20.7))
is small, and the epineutral mixing of § is also small, then in a steady ocean V-V § =0
and the thickness-weighted mean flow on density surfaces V will be along contours of
thickness-weighted planetary potential vorticity § = f}/Z

Because the square of the buoyancy frequency, N, accurately represents the vertical
static stability of a water column, there is a strong urge to regard fN? as the appropriate
planetary potential vorticity variable, and to map its contours on Neutral Density surfaces.
This urge must be resisted, as spatial maps of fN? are significantly different to those of
g = fy,. To see why this is the case the relationship between the epineutral gradients of
G and fN? will be derived.

For the present purposes Neutral Helicity will be assumed sufficiently small that the
existence of neutral surfaces is a good approximation, and we seek the integrating factor
b= b(x, y,z) which allows the construction of Neutral Density surfaces (y surfaces)
according to

V7 b(5°VS,, - 2°ve) = b(% —KVP} : (3.20.10)

Taking the curl of this equation gives

Vb {VP— pp] - — Vi xVP. (3.20.11)
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The bracket on the left-hand side is normal to the neutral tangent plane and points in the
direction n = -V z +k and is g_lNZ(—Vnz + k). Taking the component of Eqn. (3.20.11)
in the direction of the normal to the neutral tangent plane, n, we find

0 =VixVPn = (Vx +x,n)x(V,P + Pn)n
= VAXVPN = VsV Pk = (i, VS, +567,0)xV, Pk (3.20.12)
= TPV, PxV @-k = gN?H",

which simply says that the neutral helicity H" must be zero in order for the dianeutral
component of Eqn (3.20. 11) to hold, that is, V. PxV ©-k must be zero. Here the

equalities xg ﬂp and kg = — ag have been used.
Noting that the Vb can be written as Vb =V b +b,n, Eqn. (3.20.11) becomes
g7'N?V, Inbx(-V,z +k) = —P,V,xx(-V,z +k), (3.20.13)

where VP = PZ(—VpZ + k) has been used on the right-hand side, (—sz + k) being the
normal to the isobaric surface. Concentrating on the horizontal components of this

equation, g'N? V,Inb = - PV «, and using the hydrostatic equation P, =—gp gives
V,Inb = pg?N2V x = _pg2N‘2(a§Vp®—ﬂ§vpsA) (3.20.14)

The integrating factor b defined by Eqn. (3.20.10), that is b Eg o' / 7)V y-Vp! / (Vo' -vp')
where Vp' = p! (/3@VSA —-a®V0), allows spatial integrals of b (/3 VS, - a®ve) = bVinp'
~ VIny to be approximately independent of path for “vertical paths”, that is, for paths in
surfaces whose normal has zero vertical component.

By analogy with fN?, the Neutral Surface Potential Vorticity (NSPV ) is defined as
—gy ' times § = f 7, so that NSPV =b fN ? (having used the vertical component of Eqn.
(3.20.9)), so that the ratio of NSPV to fN? is found from Eqn. (3.20.14) to be

NSPV P 7,

P b = T = exp{—janspgzN’z( V,0 -5V, S ) }

(3.20.15)

exp{ fos P97 N’ZVpK.dI} :

The integral here is taken along an approximately neutral surface (such a Neutral Density
surface) from a location where NSPV is equal to fN°.

The deficiencies of fN? as a form of planetary potential vorticity have not been widely
appreciated. Even in a lake, the use of fN’ as planetary potential vorticity is inaccurate

since the right-hand side of (3.20.14) is then
(€]
~pg’NZalV,0 = pg?N2af0,V,P/P, = ~- 2 VP, (3.20.16)
(24

where the geometrical relationship V, ® = -0,V P/ P, has been used along with the
hydrostatic equation. The mere fact that the Conservative Temperature surfaces in a lake
have a slope (i. e. VP # 0) means that the spatial variation of contours of N 2 will not be
the same as that of the contours of NSPV in a lake.

In the situation where there is no gradient of Conservative Temperature along a
Neutral Density surface (V © =0) the contours of NSPV along the Neutral Density
surface coincide with those of isopycnal-potential-vorticity (IPV ), the potential vorticity
defined with respect to the vertical gradient of potential density by IPV =—fgp'p?.
IPV is related to N2 by (MCDougall (1988))

PV _ —gpp? _ AO(p)[Ro/r-1] L1 (520.17)

N2~ N2 ﬂ®(p) [R,-1] ,B (p) G®  G°
so that the ratio of NSPV to IPV plotted on an approximately neutral surface is given by
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nsev  A%(p) |R,-1]

IPV 2(p,) [Rp/r—l

You and McDougall (1991) show that because of the highly differentiated nature of

potential vorticity, isolines of IPV and NSPV do not coincide even at the reference

pressure p, of the potential density variable (see equations (14) — (16) and Figure 14 of

that paper). NSPV, fN? and IPV have the units s The ratio IPV/ N2, evaluated

according to the middle expression in Eqn. (3.20.17), is available in the GSW
Oceanographic Toolbox as the function gsw_IPV_vs_fNsquared_ratio.

] exp{ [, PO N2V - } (3.20.18)



