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Notes on the function
gsw_dynamic_enthalpy(SA,CT,p)

Notes written 34 April 2011

Young (2010) has defined dynamic enthalpy h' to be the difference between enthalpy
and potential enthalpy, that is, h— h® = h - Cg®. Hence dynamic enthalpy h' is also
equal to the following pressure integral of specific volume for a seawater parcel which
does not exchange heat or salt as its pressure is changed during the integration, (see Eqn.
(3.2.1) of the TEOS-10 Manual, IOC et al. (2010))

h'(Sa.©,p) = h(Sa,0,p)~ 20 = [ ¥(SA,0,p")dP, 1)

Fe—

The lower limit of the integration is Py, =101 325 Pa and the pressure integral is done with
pressure in Pa (not dbar). Enthalpy and dynamic enthalpy have units of J kg™.

The identical functions gsw_dynamic_enthalpy evaluates the dynamic enthalpy of
seawater as a function of Absolute Salinity, Conservative Temperature and pressure using
the 75-term expression, V(S,,©,p). This 75-term polynomial expression for specific
volume is discussed in Roquert et al. (2015) and in appendix A.30 and appendix K of the
TEOS-10 Manual (IOC et al. (2010)). For dynamical oceanography we may take the 75-
term polynomial expression for specific volume as essentially reflecting the full accuracy
of TEOS-10.
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Here follows sections 3.2 and 3.3, and appendices A.30 and K of the TEOS-10 Manual (I0C
et al. (2010)).

3.2 Potential enthalpy

Potential enthalpy h° is the enthalpy that a fluid parcel would have if its pressure were
changed to a fixed reference pressure p, in an isentropic and isohaline manner. Because
heat fluxes into and out of the ocean occur mostly near the sea surface, the reference
pressure for potential enthalpy is always taken to be p, = 0 dbar (that is, at zero sea
pressure). Potential enthalpy can be expressed as the pressure integral of specific volume
as (from McDougall (2003) and see the discussion below Eqn. (2.8.2))

0 (Sart ) = h(4.0,0) = F°(S4.0) = h(Swt,p) = ] V(Sa.0[Sp.t,p.p),p') 0P
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= h(SAnt’ p) - f\?(SA,n, p') dpP’
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= h(SA't! p) - j\?(SA,H, p') dp’
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= h(Sa.t,p) = | V(SA.0,p") dP’,
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(3.2.1)

and we emphasize that the pressure integrals here must be done with respect to pressure
expressed in Pa rather than dbar. In terms of the Gibbs function, potential enthalpy h° is
evaluated as

h®(Sat,P) =h(Sa 0, 0)= g(Sa.6,0) - (To+ 0) gy (Sa.6, 0). (32.2)

Also, note that dynamic enthalpy is defined as enthalpy minus potential enthalpy (Young,
2010) and is available as the function gsw_dynamic_enthalpy in the GSW Toolbox.
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3.3 Conservative Temperature

Conservative Temperature O is defined to be proportional to potential enthalpy,
O(Sa.t,p) = O(S4,0) = h°(Sut,p)/cS = h°(S,,0)/ch (3.3.1)
where the value that is chosen for Cg is motivated in terms of potential enthalpy evaluated
at an Absolute Salinity of Sgo = 35Upg = 35.165 04 gkg ™ and at 6 = 25 °C by
[h(Ss0, 25°C, 0) — h(Sso, 0°C, 0) |
(25 K)

~ 3991.867 957119 63 Jkg* K™, (3.3.2)

noting that h(Sgp, 0 °C, Odbar) is zero according to the way the Gibbs function is defined
in (2.6.5). We adopt the exact definition for Cg to be the 15-digit value in (3.3.2), so that

c) = 3991.867 957119 63 Jkg K™ (3.3.3)

When IAPWS-95 is used for the pure water part of the Gibbs function, ©(Ss,,0 °C,0) and
©(Ss0,25°C,0) differ from 0 °C and 25 °C respectively by the round-off amount of
5x107 °C. When TAPWS-09 (which is based on the paper of Feistel (2003), see appendix
G) is used for the pure water part of the Gibbs function, ©(Ss,,0 °C,0) differs from 0 °C
by -8.25x10% °C and ®(Sso,25 °C,0) differs from 25 °C by 9.3x10°%°C. Over the
temperature range from 0°C to 40°C the difference between Conservative Temperature
using IAPWS-95 and TAPWS-09 as the pure water part is no more than +1.5x10° °C, a
temperature difference that will be ignored.

The value of Cg in (3.3.3) is very close to the average value of the specific heat capacity
¢, at the sea surface of today’s global ocean. This value of Cg also causes the average
value of -0 at the sea surface to be very close to zero. Since Cg is simply a constant of
proportionality between potential enthalpy and Conservative Temperature, it is totally
arbitrary, and we see no reason why its value would need to change from (3.3.3) even
when in future decades an improved Gibbs function of seawater is agreed upon.

Appendix A.18 outlines why Conservative Temperature gets its name; it is
approximately two orders of magnitude more conservative compared with either
potential temperature or entropy.

The SIA and GSW software libraries both include an algorithm for determining
Conservative Temperature ® from values of Absolute Salinity S, and potential
temperature 6 referenced to p=0dbar. These libraries also have an algorithm for
evaluating potential temperature (referenced to 0dbar) from S, and ©®. This inverse
algorithm, é(SA,(D), has an initial seed based on a rational function approximation and
finds potential temperature to machine precision (~ 107 °C) in one and a half iterations of
a modified Newton-Raphson technique (McDougall et al. (2011b)).
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A.30 Computationally efficient 75-term expression for the specific volume of
seawater in terms of ®

Ocean models to date have treated their salinity and temperature variables as being
Practical Salinity S, and potential temperature . Ocean models that are TEOS-10
compatible need to calculate Absolute Salinity S, and Conservative Temperature ® (as
discussed in appendices A.20 and A.21), and they need a computationally efficient
expression for calculating specific volume (or density) in terms of Absolute Salinity S,,
Conservative Temperature ® and pressure p.

Following the work of McDougall et al. (2003) and Jackett et al. (2006), the TEOS-10
specific volume V has been approximated by a 75-term polynomial by Roquet ef al. (2015).
This polynomial is expressed in terms of the following three dimensionless salinity,
temperature and pressure variables,

S, +24gkg™
S = & , T
\/ S,

in terms of the unit-related scaling constants
Sy, = 40x35.16504¢ kg™/35, ©,=40°C and p,=10"dbar. (A.30.2)

Their polynomial expression for the specific volume of seawater is

© ad =P, (A.30.1)
®U pU

U(S0.0,p) = VD vy S 77", (A.30.3)
ivjk

where v =1 m%g™ and the non-zero dimensionless constants Vi are given in Table K.1
of appendix K. The specific volume data was fitted in a “funnel” of data points in
(Sa, ©, p) space (McDougall et al. (2003)) which extends to a pressure of 8000 dbar. At
the sea surface the “funnel” covers the full range of temperature and salinity while for
pressures greater than 6500 dbar the maximum temperature of the fitted data is 10°C and
the minimum Absolute Salinity is 30 g kg™*. That is, the fit has been performed over a
region of parameter space which includes water that is approximately 8°C warmer and
5g kg™ fresher in the deep ocean than the seawater which exists in the present ocean.

As outlined in appendix K, this 75-term polynomial expression for Vv yields the
thermal expansion and saline contraction coefficients, a® and ﬂ® , that are essentially as
accurate as those derived from the full TEOS-10 Gibbs function for data in the
“oceanographic funnel”. In dynamical oceanography it is these thermal expansion and
haline contraction coefficients which are the most important aspects of the equation of
state since the “thermal wind” is proportional to aGVp® - ,B®Vp8 A and the vertical static
stability is given in terms of the buoyancy frequency N by g 'N?=a®0, - °(S,),.
Hence for dynamical oceanography we may take Roquet et al.’s (2015) 75-term polynomial
expression for specific volume as essentially reflecting the full accuracy of TEOS-10.

Appendix P describes how an expression for the enthalpy of seawater in terms of
Conservative Temperature, specifically the functional form H(S a0, p) , together with an
expression for entropy in the form 77(S,,©), can be used as an alternative thermodynamic
potential to the Gibbs function g(Sa,t, p). The need for the functional form ﬁ(S 2:0,p)
also arises in section 3.32 and in Eqns. (3.26.3) and (3.29.1). The 75-term expression, Eqn.
(A.30.3) for v"° = \775(8 ,0, p) can be used to find a closed expression for H(SA,®, p) by
integrating \775(8 A0, p) with respect to pressure (in Pa), since ﬁp =v=p" (see Eqn.
(2.8.3)).  Specific enthalpy calculated from \775(8 A0, p) is available in the GSW
Oceanographic Toolbox as the function gsw_enthalpy(SA,CT,p). Using gsw_enthalpy to
evaluate h(S,,0,p) is 7 times faster than first evaluating the in situ temperature t (from
gsw_t_from_CT(SA,CT,p)) and then calculating enthalpy from the full Gibbs function
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expression h(S,,t,p) using gsw_enthalpy_t_exact(SA,t,p). (These last two function calls
have also been combined into the one function, gsw_enthalpy_CT_exact(SA,CT,p).)

Also, the enthalpy difference at the same values of S, and © but at different
pressures (see Eqn. (3.32.5)) is available as the function
gsw_enthalpy_diff(SA,CT,p_shallow,p_deep).

Following Young (2010), the difference between h and c%@ is called “dynamic
enthalpy” and can be found using the function gsw_dynamic_enthalpy(SA,CT,p) in the
GSW Oceanographic Toolbox.
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Appendix K: Coefficients of the 75-term expression
or the specific volume of seawater in terms of ®

The TEOS-10 Gibbs function of seawater g(S,t, p) is written as a polynomial in terms of
in situ temperature t, while for ocean models, specific volume (or density) needs to be
expressed as a computationally efficient expression in terms of Conservative Temperature
®. Roquet et al. (2015) have published such a computationally efficient polynomial for
specific volume. Their non-dimensional (root) salinity s, temperature 7, and pressure
7, variables are

S, +24gkg™
sz/&, =2 and =P, (K.1)
SAu ®U pu
in terms of the unit-related scaling constants
Sp, = 40x35.16504g kg ' /35,  ©,=40°C and p, =10"dbar. (K.2)

Their polynomial expression for the specific volume of seawater is
5 i ik
U(S0.0,p) = v, D vy S 77", (K.3)
i.jk
where v, =1 m°kg™ and the non-zero dimensionless constants Vi are given in Table K.1.

Roquet et al. (2015) fitted the TEOS-10 values of specific volume v to S,, ® and p ina
“funnel” of data points in (S,, ®, p) space. This is the same “funnel” of data points as
used in McDougall et al. (2003); at the sea surface it covers the full range of temperature
and salinity while for pressure greater than 6500 dbar, the maximum temperature of the
fitted data is 10°C and the minimum Absolute Salinity is 30 g kg™. The maximum
pressure of the “funnel” is 8000 dbar. Table K.1 contains the 75 coefficients of the
expression (K.3) for specific volume in terms of (S, ©, p).

The rms error of this 75-term approximation to the full Gibbs function-derived TEOS-
10 specific volume over the “funnel” is 0.2x10~° m°kg™; this can be compared with the rms
uncertainty of 4x10~°m%g™ of the underlying laboratory density data to which the TEOS-
10 Gibbs function was fitted (see the first two rows of Table O.1 of appendix O). Similarly,
the appropriate thermal expansion coefficient,

o _ Lo

_top _ topp (K.4)
v 00

p 00s, o
of the 75-term equation of state is different from the same thermal expansion coefficient
evaluated from the full Gibbs function-derived TEOS-10 with an rms error in the “funnel”
of 0.03x107® KL this can be compared with the rms error of the thermal expansion
coefficient of the laboratory data to which the Feistel (2008) Gibbs function was fitted of
0.73x10° K™ (see row six of Table O.1 of appendix O). In terms of the evaluation of
density gradients, the haline contraction coefficient evaluated from Eqn. (K.3) is many
times more accurate than the thermal expansion coefficient. Hence we may consider the
75-term polynomial expression for specific volume, Eqn. (K.3), to be equally as accurate as
the full TEOS-10 expressions for specific volume, for the thermal expansion coefficient and
for the saline contraction coefficient for data that reside inside the “oceanographic funnel”.
The sound speed evaluated from the 75-term polynomial of Eqn. (K.3) has an rms
error over the “funnel” of 0.025m s which is a little less than the rms error of the
underlying sound speed data that was incorporated into the Feistel (2008) Gibbs function,
being 0.035 ms™ (see rows 7 to 9 of Table O.1 of appendix O). Hence, especially for the
purposes of dynamical oceanography where a® and 3° are the aspects of the equation of

SA/P



Notes on gsw_dynamic_enthalpy 7

state that, together with spatial gradients of S, and ®, drive ocean currents and affect the
calculation of the buoyancy frequency, we may take the 75-term expression for specific
volume, Eqn. (K.3), as essentially reflecting the full accuracy of TEOS-10.

The wuse of Eqn. (K3) to evaluate \7(SA,®, p) or p(S,,0,p) from
gsw_specvol(SA,CT,p) or gsw_rho(SA,CT,p) is approximately five times faster than first
evaluating the in situ temperature t (from gsw_t_from_CT(SA,CT,p)) and then calculating
in situ specific volume or density from the full Gibbs function expression Vv(Sa,t, p) or
P(Sast,p) via gsw_specvol_t_exact(SAt,p) or gsw_rho_t_exact(SAt,p). (These two
function calls have been combined into gsw_specvol CT_exact(SA,CT,P) and
gsw_rho_CT_exact(SA,CT,P).)

Table K.1. Coefficients of the 75-term polynomial of Roquet et al. (2015).

Vijk Vijk Vijk

1.0769995862e-3 -8.0539615540e-7 -5.8484432984e-7

-3.1038981976e-4 -3.3052758900e-7 -4.8122251597¢e-6

6.6928067038e-4 2.0543094268e-7 4.9263106998e-6

-8.5047933937e-4 -6.0799143809¢-5 -1.7811974727e-6

5.8086069943e-4 2.4262468747e-5 -1.1736386731e-6

-2.1092370507e-4 -3.4792460974e-5 -5.5699154557¢e-6

3.1932457305¢e-5 3.7470777305e-5 5.4620748834¢e-6

-1.5649734675e-5 -1.7322218612e-5 -1.3544185627e-6

3.5009599764e-5 3.0927427253e-6 2.1305028740e-6

-4.3592678561e-5 1.8505765429¢e-5 3.9137387080e-7

3.4532461828e-5 -9.5677088156¢e-6 -6.5731104067e-7

-1.1959409788e-5 1.1100834765e-5 -4.6132540037e-7

1.3864594581e-6 -9.8447117844¢e-6 7.7618888092e-9

2.7762106484e-5 2.5909225260e-6 -6.3352916514e-8

-3.7435842344e-5 -1.1716606853e-5 -1.1309361437e-6

3.5907822760e-5 -2.3678308361e-7 3.6310188515e-7

-1.8698584187e-5 2.9283346295e-6 1.6746303780e-8

3.8595339244¢e-6 -4.8826139200e-7 -3.6527006553e-7

-1.6521159259¢-5 7.9279656173e-6 -2.7295696237e-7

2.4141479483e-5 -3.4558773655e-6 2.8695905159e-7

-1.4353633048e-5 3.1655306078e-7 1.0531153080e-7

2.2863324556e-6 -3.4102187482e-6 -1.1147125423e-7

6.9111322702e-6 1.2956717783e-6 3.1454099902e-7

-8.7595873154e-6 5.0736766814e-7 -1.2647261286e-8
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