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DERIVING THE VERTICAL VARIATION OF THE  

GRAVITATIONAL ACCELERATION IN THE OCEAN  
 

 

Notes written by Trevor McDougall,  27th July 2010 
 
 
Fact A.  Total mass of the earth (including its oceans) is  

M = 5.9742 x 1024 kg . (1) 
 
Fact B. Radius of the earth is (radius of the sphere having the same volume as the earth, and this is the 
radius that MOM and other GFDL models, ice, atmosphere, use)  

a = 6.371 x 106 m . (2) 
 
Fact C. Volume of the earth ( 34

3 a ) is   

V = 1.08321 x 1021 m3 . (3) 
 
Fact D. The gravitational acceleration inside a sphere of uniform density varies 
linearly with radius from the centre of the sphere to the outside. 
 
Fact E.  The gravitational acceleration outside of a sphere decreases as the reciprocal 
of the square of the distance from the centre of the sphere.  That is, as far as this 
external gravitational field is concerned, the mass of the sphere behaves as though it 
is concentrated at the centre of the sphere.  This is true so long as the density of 
material in the sphere is a function of radius only, and not also a function of latitude 
and longitude.   
 
 
Assumption 1: That the average density of seawater is 1035 3kg m  (from Gill 
(1982) and Griffies (2004)).   
 

I think that the above 5 facts and 1 assumption are enough to quantify the 
vertical variation of the gravitational acceleration inside the ocean.  What I get 
below is almost identical to what Saunders and Fofonoff (1976) and Saunders 
(1981) quote without a reference.  An email from Bob Hallberg in mid 2009 
pointed out Fact D above, and this is key.  In fact, I think that Bob essentially 
derived what I do below.   
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The conceptual Seawater Sphere and point mass “solid” earth 

  Imagine that planet earth is in fact the sum of a sphere of seawater, plus a 
single point mass at the centre of the earth.  The sum of the mass of the seawater 
sphere and the point mass, is set equal to the total mass of the earth M of Eqn. (1).   

The mass of the seawater sphere is  
mass of Seawater Sphere  = 1035 x 1.08321  x 1021 kg  = 1.1211 x 1024 kg.    

(4) 
The point mass of solid earth at the earth’s centre has a mass of  

point mass at the earth’s centre  = (5.9742 - 1.1211) x 1024 kg .       (5) 
 
The ratio R of the mass of the seawater sphere to the total mass of the earth is then  

R = 1.1211
0.187661

5.9742
 . (6) 

 
 
Split the gravitational acceleration into the sum of the two parts  

 So, at the earth’s surface we can regard the fraction R of the gravitational 
acceleration g as being due to the attraction of the seawater sphere (which occupies 
the whole volume of the earth) plus the fraction (1 – R) of the gravitational 
acceleration g due to the attraction of the point source of solid mass located at the 
centre of the earth (which occupies zero volume, although this zero volume aspect is 
not essential).   

 

 
Recognize that we do know how the gravitational acceleration of both parts 
vary with depth in the ocean  

 The beauty of this particular decomposition of the earth’s mass is that as we 
go down into the ocean, we do know how the gravitational acceleration of both the 
two individual components vary with depth.  For the seawater sphere, its 
gravitational acceleration, which is  ,0R g   at the sea surface, decreases linearly 

with depth, to become zero at the earth’s centre.  (Here  ,0g   stands for the full 

gravitational acceleration at latitude   and at zero pressure, from Moritz (2000)).  
For the point mass at the centre of the earth, its contribution to the gravitational 
acceleration increases in proportion to the inverse square of the radial distance to the 
centre of the earth.   

 So long as we are considering depths that are actually in the ocean and not in 
the solid earth below the ocean, this decomposition into a seawater sphere and a 
point mass at the earth centre is legitimate.   
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Doing the sums  

 Take z to be positive upwards, so it is negative in the ocean, starting at z = 0 
at the geoid.  The above considerations imply that  
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and by contrast, in the atmosphere we have  
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A Taylor series expansion of Eqn. (7) in terms of the height z  from the sea surface 
gives  
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The quadratic term is small and can be ignored, so that  
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whereas the corresponding expression for the atmosphere (for small z) is  

   , ,0 1 2
z

g z g
a

          
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 The ratio  2 3 / 2R , using R from Eqn. (6), is 0.7185 so that the gravitational 
acceleration increases with depth in the ocean at 71.85% of the rate at which the 
gravitational acceleration decreases with height in the atmosphere.   
 
 Using the values of a and R from Eqns. (2) and (6), Eqn. (10) becomes  

     7, ,0 1 2.2556 10 / (m)g z g x z    , ocean      (12) 

and this agrees very closely with the corresponding expression 
    6, ,0 2.226 10 / (m)g z g x z     which is used without attribution by both 

Saunders and Fofonoff (1976) and by Saunders (1981).   
 
 I suggest that we round off the number in (12) a little to take the following as 
“gospel” (and define 7 12.26 10 mx   )  

     7, ,0 1 2.26 10 / (m)g z g x z    , ocean      (12a) 

 
 An approximate expression in terms of pressure in the ocean rather than z is 
found by using  / (dbar) 9.7963 0.1035 / (m)p x z   in Eqn. (12) obtaining  

     7, ,0 1 2.22 10 / (dbar)g z g x p    . ocean      (13) 

 Equations (12a) and (13) are what has been adopted by TEOS-10 and appears 
in Appendix D of the TEOS-10 Manual (IOC et. al., 2010).   
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Here follows the part of Appendix D of IOC et al. (2010) that is concerned with the 
gravitational acceleration.   
 
Gravitational Acceleration 

The gravitational acceleration  g  in the ocean can be taken to be the following function of 

latitude   and sea pressure  p , or height  z  relative to the geoid,  
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(D.3) 

The dependence on  latitude  in Eqn. (D.3)  is from Moritz (2000) and  is  the gravitational 

acceleration on the surface of an ellipsoid which approximates the geoid.  The variation 

of  g  with  z  and  p  in the ocean in Eqn. (D.3) is derived in McDougall et al. (2013).  The 

height  z  above the geoid is negative in the ocean.   Note that  g  increases with depth in 

the ocean at about 71.85% of the rate at which it decreases with height in the atmosphere.   

At a  latitude of  45 N  and at  0p  ,  29.8062 m s ,g   which  is a value  commonly 

used  in  ocean  models.    The  value  of  g   averaged  over  the  earth’s  surface  is 
29.7976 m s ,g    while  the  value  averaged  over  the  surface  of  the  ocean  is 
29.7963 m sg   (Griffies (2004)).   

 
 
 


