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Notes on the function
[SA_final, CT _final, w_Ih_final] = ...
gsw_frazil_properties(SA_bulk, h_pot_bulk, p)

This function, gsw_frazil properties(SA_bulk, h_pot_bulk,p), evaluates the final interstitial
seawater Absolute Salinity, interstitial seawater Conservative Temperature, and the final ice mass
fraction of the seawater and frazil mixture that exists at the equilibrium freezing temperature for
given input values of the bulk Absolute Salinity, SA_bulk, bulk potential enthalpy, h_pot_bulk,
and pressure, p. The “bulk” variables, h_pot_bulk and SA_bulk are defined in Eqns. (1) and (2)
below.

Consider a box in a Cartesian z-coordinate model that advances the conservation equations for
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“heat” “salt” and “ice”. Imagine these three quantities being advanced one time step by the
processes of advection and diffusion and boundary fluxes [including the air-sea boundary fluxes
and the ice-sea boundary fluxes] and the vertical Stokes drift velocity of the frazil ice size classes,
migrating vertically between model boxes. After this advection/diffusion step, the variables need
to be brought back into thermodynamic equilibrium at the freezing temperature, and during this
second part of the time step, there is no transfer of heat, salt or water across the faces of the box.

In this second part of the model time step we consider a mixture of small ice Ih crystals (frazil
ice) suspended in seawater, and we ignore any relative vertical velocity that the ice crystals might
have with respect to the seawater. In section 5 of McDougall et al. (2014) we considered what
happened when the pressure of this seawater-frazil ice mixture changed. In section 3 of that
paper we dealt with the melting of ice Ih into seawater at fixed pressure, and we compared
panels (a) and (b) of Figure 6 to show that at a pressure of 500 dbar the assumption that the sum
of the potential enthalpies of ice and seawater is conserved leads to an error of 0.15% (the correct
thing that is conserved is the sum of the in situ enthalpies of ice and seawater). Most of this error
is due to ice, not seawater, since an error of 0.15% for seawater alone occurs at a much larger
pressure of 4000dbar . Graham and McDougall (2013) proved that the error involved in treating
Conservative Temperature as totally conserved is very small. The arguments to prove this were
rather complicated, and are to be found in section 3b of that paper; essentially it is based on the
realization that for a turbulent mixing process occurring at a particular pressure, the potential
enthalpy referenced to that pressure is both a “potential” and a “conservative” variable. Figure
6(a) and 6(b) of our ice paper does the same thing for the interaction of ice Ih and seawater. In
the present code we conserve enthalpy (rather than the potential enthalpy). In so doing, this
code will not be as computationally efficient as if we made the approximation of conserving
potential enthalpy.

Let the mass fraction of ice be W"; the mass fraction of seawater in the ice-seawater mixture is
then (l —wh ) The total enthalpy per unit mass of the ice-seawater mixture at any stage is the
weighted sum of the specific enthalpies of the two phases, namely

hB

(1-w")h + w"h'". 1)

Here the “B” of %® stands for “bulk”. The specific enthalpy of ice Th, h™, can be expressed in the
functional form h" (t'h, p) in terms of the in situ temperature of the ice.

After the first part of the two-stage time-stepping procedure one gets an updated value of h®.
During this first half of the time step one can imagine the model to have advected and diffused
h® across the six faces of each of the model’s boxes.

The analogous salty thing that should be advected and diffused by the model is the “bulk
salinity”, that is, the “Absolute Salinity of the mixture”, defined by
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Sa = (1-w")s,, )

and the analogous thing for ice is the mass fraction of ice itself, namely w". Note that h® and
Sy are conservative variables while W" is not a conservative variable during the process of
adjustment to a new thermodynamic equilibrium. That is, during the second half of the time
step, when the seawater and ice phases are brought into thermodynamic equilibrium, h® and Sp
are both conserved but w" is not (and neither is the interstitial Absolute Salinity S, of the
seawater component).

That is, the variables that should be conserved during the thermodynamic equilibration phase

h® = (1—W'h)h + w'h™[  and |SP = (1—W|h)SA. 3)

At the end of the first phase of each time step we will have the subscript 1 values

hf = (1—Wl'h)hl + wh", sB = (1—W1Ih)SAl and w", (4)

are

and our job is to invent a phase two procedure of this time step that brings the ocean and ice
properties back into equilibrium at the freezing temperature. During this phase two, the mass
fraction of ice will change and the constraints are that there is no exchange of heat with the
environment, that is that

(1 - wéh)h2 + w'h)t = (1 - Wllh)hl +w'h" = hp, (5)
that the total amount of salt is conserved, that is that
(1 -y ) Sp = (1 - )SAl = Sas (6)
and that the total amount of H,O is conserved, that is, that
(1—w§h)(1—SA2) + Wy = (1—W1'h)(1—SA1) +w". 7)

This H,0 constraint is the same constraint as the salt constraint Eqn. (6), so we can ignore it.

So we have the two constraints Eqns. (5) and (6) as well as the fact that either (i) the final
values are at the freezing temperature, or (ii) that there is no ice present. So our aim is to find the
value of the ice mass fraction wy' that solves f (Wéh) = 0 where the function f (W'h) is given by

f (Wlh) = hlB - (l - Wlh)h(SA'®freezing [SA' p]' p) - w"h" (tfreezing [SA' p]' p) 8)

During the evaluation of f (W'h) the interstitial seawater Absolute Salinity is given by
gB
Sp = —2L . 9
A (1 _ Wlh) ( )
The zero of f (W'h) , namely finding the value of wy' at which f (W&h) =0, is found using the
modified Newton-Raphson method of McDougall and Wotherspoon (2014) using the following

expression for the derivative of f (W'h) with respect to w" (using the w" derivative of Eqn. (9)),
f,(Wlh) = h(SAl®freezing [SAl p]l p) - hlh (tfreezing [SA’ p]’ p)
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So how do we proceed to solve f (W'h) =0 and so proceed from the intermediate time step 1

to arrive at the values labeled 2 at the end of the full model time step; values labeled 2 that solve

f (Wéh) =07? Answer, we do a Modified Newton Raphson iterative procedure (McDougall and

Wotherspoon (2014)), and the first value of f (W'h) is the value of f at w;". We can calculate the
value of the interstitial Absolute Salinity at the half time step (at time 1) from Eqn. (6), namely
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gB
Sar = ¢|h ’ (12)

(1 - W )
where we are confident that the ice mass fraction never approaches unity because when it gets
greater than say 0.2, a very large vertical diffusion coefficient kicks in to the model code to ensure
that the interstitial salinity does not get too large and that the ice mass fraction never ever exceeds

0.5. The initial value of f isthen

f (Wlh) = hlB - (1 - Wllh)h(sAb@freezing [SAll p]' p) - WlIh h'" (tfreezing [SAll p]' p) : (13)

The initial value of the derivative f’ is similarly evaluated at S,; as

f,(Wllh) = h(SAll®freezing [SAll p]l p) - hlh (tfreezing [SAl’ p]’ p)
oh . (14)
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where the partial derivatives are evaluated at (S,,, p). Note that in Eqn. (10) the largest term is
— h" (tfreezing [Sa: P]. p), and in fact the top line of Eqn. (10) is very similar to the latent heat of
melting.

What to do if all the ice melts by the end of this time step? This paragraph addresses the situation
where we find that w)' < 0. That is, we consider the situation where we find that the solution of
f (Wéh) = 0 corresponds to the mass fraction of ice W) being negative. This indicates that during
this equilibration phase all of the ice will melt. This means that one is left with pure seawater
rather a conglomerate of seawater and ice. When this is detected we set the final ice mass fraction
to zero, (Wy' = 0) and S,, is calculated from Eqn. (6) as Sp, = Spy = (1 - W1Ih)SA1/ while with
wy' =0 Eqn. (5) reduces to

h, = h(SR.6,p) = (1-w")h + w'h" = h?, (15)

which can be inverted using gsw_CT_from_enthalpy_exact to yield the Conservative
Temperature of the final mixture, ©,.

How do we detect that we are in a sufficiently warm piece of seawater that we do not need to spend the
computer time in this “frazil properties” code? It makes sense to have a simple method to detect
when we are in a box that is sufficiently warm that if we entered this thermodynamic code, the
output would be wy' <0, because then we know that in fact the answer is warm seawater with
no frazil ice and the answer is very simple to write down.

The way to detect this situation is to consider the situation where the output ice mass fraction
wy' is exactly zero and the seawater is exactly at the freezing temperature. We ask what value of
the input bulk potential enthalpy, i .., would be required in order to achieve exactly wy' =0 at
the freezing temperature. In this case (from Eqn. (3)) we see that S,m = Sa and

nR o = C%@heezing(SEl, p). Recapping, if the input bulk potential enthalpy is this value,

Cg Ofreezing (SAsl, p), the output of the modified Newton’s Method iterations will yield
w)' =0. Now we note that if 72 > hl... then the modified Newton’s Method will yield a
negative final ice mass fraction, that is wy' < 0. This can be seen from evaluating f (W'h) of Eqn.
(8) with w" =0 noting that because RS > ., f(W'h) >0, and then noting that since the
derivative, Eqn. (10), is always positive, this implies that w," < 0.
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The upshot of this detection method is simply that we test whether 7] > Cg Ofreezing (S S, p)
and if it is, we avoid doing the computationally expensive modified Newton’s Method iterations
and instead we put

wih =0, Sy, =S8, and @, =ny/c. (16)
In more detail, in the code we evaluate a variable we call funcO defined by
funcO = hlB - Cg(afreezing (SABJ! p) ’ (16A)

and if this variable is positive (or zero) we determine the three outputs of the algorithm using
Eqn. (16). In this way the computationally expensive Newton iterations are avoided for all the
data that is “too warm” to contain any frazil ice at the end of the iterations.

The initial value of W" in the code. For data values that have funcO <0 (which means that 7
is “sufficiently cool” that some frazil ice will co-exist in thermodynamic equilibrium with the
interstitial seawater at the end of the time step) we proceed as follows. We realize that w" -0 as
funcO — 0 and we find an initial estimate of the ice mass fraction w" as being funcO divided by
a very simple four-term polynomial in funcO and pressure. With this initial value of w" the
modified Newton’s method of McDougall and Wotherspoon (2014) is employed to find the root
of f(Wéh) =0 using the expression Eqn. (10) or (14) for the derivative of this function. The
method converges to machine precision within three iterations.

There are three similar GSW (Gibbs SeaWater) codes that solves f (W&h) =0. These are called
[SA_final, CT_final, w_Ih_final] = gsw_frazil_properties_potential(SA_bulk,h_pot_bulk,p)
and
[SA_final, CT final, w_Ih_final] =...
gsw_frazil properties_potential_poly(SA_bulk,h_pot_bulk,p).
It is this “poly” version of this code that we expect to be used in forward ocean models. We also
have the present code
[SA_final, CT_final, w_Ih_final] = gsw_frazil_properties(SA_bulk,h_bulk,p)
where the quantity that is input is enthalpy rather than potential enthalpy. This code is very
computationally expensive compared with the other two.
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