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Notes on the function
gsw_rho_first_derivatives(SA,CT,p)

This function, gsw_rho_first_derivatives(SA,CT,p), evaluates the first derivatives of in
situ density p with respect to Absolute Salinity, Conservative Temperature and pressure,
with the input temperature being Conservative Temperature ©.

This code uses the 75-term polynomial expression for specific volume is discussed in
Roquert et al. (2015) and in appendix A.30 and appendix K of the TEOS-10 Manual (IOC et
al. (2010)).

The appropriate thermal expansion coefficient,

a®=-12 (1)
p 00
and when evaluated from the 75-term computationally-efficient expression for specific
volume, the rms error compared with the same thermal expansion coefficient evaluated
directly from the TEOS-10 Gibbs function is 0.03x10° K™ in the “oceanographic funnel”.
This is to be compared with the rms error of the thermal expansion coefficient of the
laboratory data to which the TEOS-10 Gibbs function was fitted of 0.73x10° K™,
The saline contraction coefficient 8° is defined as
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and when evaluated from the 75-term computationally-efficient expression for specific
volume. In terms of the evaluation of density gradients, the haline contraction coefficient
evaluated from Eqn. (K.3) is many times more accurate than the thermal expansion
coefficient. Compared with the mean value of £, this error is small compared with the
ratio of the uncertainty in the thermal expansion coefficient to its mean value, and so the
error in A% is negligible.

In dynamical oceanography it is the thermal expansion and haline contraction
coefficients a® and f° which are the most important aspects of the equation of state
since the “thermal wind” is proportional to a®Vp® — ﬂ®VpSA and the vertical static
stability is given in terms of the buoyancy frequency N by g'N?=a°0, - °(S,),.
Hence for dynamical oceanography we may take the 75-term polynomial function
expression for specific volume as essentially reflecting the full accuracy of TEOS-10.

This 75-term expression for specific volume is the obvious choice for use in ocean
models since it is a function of the model’s temperature variable, Conservative
Temperature. The highly accurate nature of the 75-term expressions means that
theoretical studies, observational oceanography and ocean modeling can all be performed
using the same equation of state which is conveniently expressed in terms of Conservative
Temperature.  This ends the need to continually transform from Conservative
Temperature back to in situ temperature in order to calculate density and its derivatives.
It is this 75-term expression for specific volume that is used in the GSW functions to
evaluate the buoyancy frequency N and the various geostrophic streamfunctions, and
will be the basis for updated algorithms for @ -surfaces (Klocker et al. (2010)) and Neutral
Density y" (Jackett and McDougall (1997)).

This function, gsw_rho_first_derivatives(SA,CT,p), returns the three partial derivatives
6p/8SA|®’p, 5p/6®|SA’p and 8,0/8P|SA’ o+ The pressure derivative is done with respect to
pressure in Pa rather than in dbar. This is done so that this pressure derivative of p is
compatible with straightforward evaluation of the isentropic compressibility
(k= p_lap/ﬁp‘s @) and the sound speed ¢ (since 6,0/6P|SA 0= c?).
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Here follows sections 2.16, 2.17 and appendices A.30 and K of the TEOS-10 Manual (IOC et
al., 2010).

2.16 Isentropic and isohaline compressibility
When the entropy and Absolute Salinity are held constant while the pressure is changed,
the isentropic and isohaline compressibility « is obtained:
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The isentropic and isohaline compressibility « is sometimes called simply the isentropic
compressibility (or sometimes the “adiabatic compressibility”), on the unstated
understanding that there is also no transfer of salt during the isentropic or adiabatic
change in pressure. The isentropic and isohaline compressibility of seawater x produced
by both the SIA and GSW software libraries (appendices M and N) has units of Pa™.

2.17 Sound speed

The speed of sound in seawater ¢ is given by

c=c(Sat,p) = (aP/5P|SAy,7)O'5 = (PK)%)'S =0p (gTT/[gTZP — O QPPJ)O'S . (2.17.1)

Note that in these expressions in Eqn. (2.17.1), since sound speed is in ms™ and density
has units of kg m~* it follows that the pressure of the partial derivatives must be in Pa and
the isentropic compressibility ¥ must have units of Pa™. The sound speed ¢ produced
by both the SIA and the GSW software libraries (appendices M and N) has units of ms™.
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Here follows appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)).

A.30 Computationally efficient 75-term expression for the specific volume of
seawater in terms of ©

Ocean models to date have treated their salinity and temperature variables as being
Practical Salinity S, and potential temperature 6. Ocean models that are TEOS-10
compatible need to calculate Absolute Salinity S, and Conservative Temperature © (as
discussed in appendices A.20 and A.21), and they need a computationally efficient
expression for calculating specific volume (or density) in terms of Absolute Salinity S,,
Conservative Temperature ® and pressure p .

Following the work of McDougall et al. (2003) and Jackett et al. (2006), the TEOS-10
specific volume V has been approximated by a 75-term polynomial by Roquet et al. (2015).
This polynomial is expressed in terms of the following three dimensionless salinity,
temperature and pressure variables,

-1
s = /w , r=2 and =P , (A.30.1)
SAu ®U Py
in terms of the unit-related scaling constants
S, = 40x35.16504g kg1 /35, ©,=40°C and p, =10"dbar. (A.30.2)

Their polynomial expression for the specific volume of seawater is

V(Sa0,p) = Vv, Y vy s' Tk, (A.30.3)
ik

where v, =1 m°kg™ and the non-zero dimensionless constants Vi are given in Table K.1
of appendix K. The specific volume data was fitted in a “funnel” of data points in
(Sa. ©, p) space (McDougall et al. (2003)) which extends to a pressure of 8000 dbar. At
the sea surface the “funnel” covers the full range of temperature and salinity while for
pressures greater than 6500 dbar the maximum temperature of the fitted data is 10°C and
the minimum Absolute Salinity is 30 g kg™. That is, the fit has been performed over a
region of parameter space which includes water that is approximately 8°C warmer and
5g kg™ fresher in the deep ocean than the seawater which exists in the present ocean.

As outlined in appendix K, this 75-term polynomial expression for v yields the
thermal expansion and saline contraction coefficients, @® and f°, that are essentially as
accurate as those derived from the full TEOS-10 Gibbs function for data in the
“oceanographic funnel”. In dynamical oceanography it is these thermal expansion and
haline contraction coefficients which are the most important aspects of the equation of
state since the “thermal wind” is proportional to aGVpG - ﬁGVpS A and the vertical static
stability is given in terms of the buoyancy frequency N by g7'N?=a®0, — °(S,), .
Hence for dynamical oceanography we may take Roquet et al.’s (2015) 75-term polynomial
expression for specific volume as essentially reflecting the full accuracy of TEOS-10.

Appendix P describes how an expression for the enthalpy of seawater in terms of
Conservative Temperature, specifically the functional form ﬁ(S a0, p), together with an
expression for entropy in the form 77(S,,0), can be used as an alternative thermodynamic
potential to the Gibbs function g(Sa,t, p). The need for the functional form ﬁ(S A0, p)
also arises in section 3.32 and in Eqns. (3.26.3) and (3.29.1). The 75-term expression, Eqn.
(A.30.3) for v™® =V"(S,,0, p) can be used to find a closed expression for ﬁ(SA,G), p) by
integrating \775(SA,®, p) with respect to pressure (in Pa), since ﬁp =v=p" (see Eqn.



Notes on gsw_rho_first_derivatives 4

(2.8.3)).  Specific enthalpy calculated from ¥’°(S,,®,p) is available in the GSW
Oceanographic Toolbox as the function gsw_enthalpy(SA,CT,p). Using gsw_enthalpy to
evaluate H(S A0, p) is 7 times faster than first evaluating the in situ temperature t (from
gsw_t_from_CT(SA,CT,p)) and then calculating enthalpy from the full Gibbs function
expression h(Sx,t, p) using gsw_enthalpy_t_exact(SA,t,p). (These last two function calls
have also been combined into the one function, gsw_enthalpy_CT_exact(SA,CT,p).)

Also, the enthalpy difference at the same values of S, and © but at different
pressures (see Eqn. (3.32.5)) is available as the function
gsw_enthalpy_diff(SA,CT,p_shallow,p_deep).

Following Young (2010), the difference between h and C?,@ is called “dynamic
enthalpy” and can be found using the function gsw_dynamic_enthalpy(SA,CT,p) in the
GSW Oceanographic Toolbox.
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Appendix K: Coefficients of the 75-term expression
or the specific volume of seawater in terms of ®

The TEOS-10 Gibbs function of seawater g(Sa,t, p) is written as a polynomial in terms of
in situ temperature t, while for ocean models, specific volume (or density) needs to be
expressed as a computationally efficient expression in terms of Conservative Temperature
©. Roquet et al. (2015) have published such a computationally efficient polynomial for
specific volume. Their non-dimensional (root) salinity s, temperature 7, and pressure
7, variables are

-1
s = S—A+24gkg § z-sg and ﬂEi, (K.1)
Sl’-\u ®u Py
in terms of the unit-related scaling constants
S, = 40x35.16504g kg'/35, ©,=40°C and p, =10"dbar. (K.2)

Their polynomial expression for the specific volume of seawater is

V(Sa,©,p) = V, > vy s oiz*, (K.3)
ik
where v, =1 m°kg™ and the non-zero dimensionless constants Vi are given in Table K.1.

Roquet et al. (2015) fitted the TEOS-10 values of specific volume v to S,, ® and p ina
“funnel” of data points in (S,, ®, p) space. This is the same “funnel” of data points as
used in McDougall et al. (2013); at the sea surface it covers the full range of temperature
and salinity while for pressure greater than 6500 dbar, the maximum temperature of the
fitted data is 10°C and the minimum Absolute Salinity is 30 g kg™t. The maximum
pressure of the “funnel” is 8000 dbar. Table K.1 contains the 75 coefficients of the
expression (K.3) for specific volume in terms of (S s O, p) .

The rms error of this 75-term approximation to the full Gibbs function-derived TEOS-
10 specific volume over the “funnel” is 0.2x10~° m*kg™; this can be compared with the rms
uncertainty of 4x10° m°kg™ of the underlying laboratory density data to which the TEOS-
10 Gibbs function was fitted (see the first two rows of Table O.1 of appendix O). Similarly,
the appropriate thermal expansion coefficient,

1o
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of the 75-term equation of state is different from the same thermal expansion coefficient

evaluated from the full Gibbs function-derived TEOS-10 with an rms error in the “funnel”
of 0.03x10°K™; this can be compared with the rms error of the thermal expansion
coefficient of the laboratory data to which the Feistel (2008) Gibbs function was fitted of
0.73x10° K™ (see row six of Table O.1 of appendix O). In terms of the evaluation of
density gradients, the haline contraction coefficient evaluated from Eqn. (K.3) is many
times more accurate than the thermal expansion coefficient. Hence we may consider the
75-term polynomial expression for specific volume, Eqn. (K.3), to be equally as accurate as
the full TEOS-10 expressions for specific volume, for the thermal expansion coefficient and
for the saline contraction coefficient for data that reside inside the “oceanographic funnel”.

The sound speed evaluated from the 75-term polynomial of Eqn. (K.3) has an rms
error over the “funnel” of 0.025ms™ which is a little less than the rms error of the
underlying sound speed data that was incorporated into the Feistel (2008) Gibbs function,
being 0.035 m s (see rows 7 to 9 of Table O.1 of appendix O). Hence, especially for the
purposes of dynamical oceanography where a® and B° are the aspects of the equation of
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state that, together with spatial gradients of S, and ®, drive ocean currents and affect the
calculation of the buoyancy frequency, we may take the 75-term expression for specific
volume, Eqn. (K.3), as essentially reflecting the full accuracy of TEOS-10.

The use of Eqn. (K3) to evaluate V(S,,0,p) or p(Sa0,p) from
gsw_specvol(SA,CT,p) or gsw_rho(SA,CT,p) is approximately five times faster than first
evaluating the in situ temperature t (from gsw_t_from_CT(SA,CT,p)) and then calculating
in situ specific volume or density from the full Gibbs function expression Vv(Sa,t, p) or
P(Sa:t,p) via gsw_specvol_t_exact(SAt,p) or gsw_rho_t_exact(SAt,p). (These two
function calls have been combined into gsw_specvol CT_exact(SA,CT,P) and
gsw_rho_CT_exact(SA,CT,P).)

Table K.1. Coefficients of the 75-term polynomial of Roquet et al. (2015).

Vijk Vijk Vijk

1.0769995862e-3 -8.0539615540e-7 -5.8484432984e-7

-3.1038981976e-4 -3.3052758900e-7 -4.8122251597¢e-6

6.6928067038e-4 2.0543094268e-7 4.9263106998e-6

-8.5047933937e-4 -6.0799143809¢-5 -1.7811974727e-6

5.8086069943e-4 2.4262468747e-5 -1.1736386731e-6

-2.1092370507e-4 -3.4792460974e-5 -5.5699154557¢e-6

3.1932457305¢e-5 3.7470777305e-5 5.4620748834¢e-6

-1.5649734675e-5 -1.7322218612e-5 -1.3544185627e-6

3.5009599764e-5 3.0927427253e-6 2.1305028740e-6

-4.3592678561e-5 1.8505765429¢e-5 3.9137387080e-7

3.4532461828e-5 -9.5677088156¢e-6 -6.5731104067e-7

-1.1959409788e-5 1.1100834765e-5 -4.6132540037e-7

1.3864594581e-6 -9.8447117844¢e-6 7.7618888092e-9

2.7762106484e-5 2.5909225260e-6 -6.3352916514e-8

-3.7435842344e-5 -1.1716606853e-5 -1.1309361437e-6

3.5907822760e-5 -2.3678308361e-7 3.6310188515e-7

-1.8698584187e-5 2.9283346295e-6 1.6746303780e-8

3.8595339244¢e-6 -4.8826139200e-7 -3.6527006553e-7

-1.6521159259¢-5 7.9279656173e-6 -2.7295696237e-7

2.4141479483e-5 -3.4558773655e-6 2.8695905159e-7

-1.4353633048e-5 3.1655306078e-7 1.0531153080e-7

2.2863324556e-6 -3.4102187482e-6 -1.1147125423e-7

6.9111322702e-6 1.2956717783e-6 3.1454099902e-7

-8.7595873154e-6 5.0736766814e-7 -1.2647261286e-8

Al (dDlw|lw|lw|lw|IvIMIMIVINIRP[RP|R|RP[FP|R,|O|lO|l0|O |0 |0 | [
o|lo|lo|lo|lo|lo|lo|jlo|jo|lo|lo|o|lo|lo|lo|jo|o|o|o|o|o|o|o|o|o |~

oclu|ld|ldh|lw|lwWw|lW|IM|IMN|IM|IN|FR [P |FR|FR|FP OO0 | |0 |0 [
S e e N I L I R G R R G R R R R R =R ==

OO |D|D DWW |w|w|w|w ([N [N R

o|lo|lr|lo|lo|M| (kPR |lOjcO|d|W W |NMIDNIN|FP|FRP[FR|F|O|l0O|C|O (=

N [P |O|Ww[IN (kO |lWIN|POJO|dWIN|POO|jO | |W[IN (L O
O ||k, |[ON|kP|IO|W|IN (PO WIN|POC(O | |W|IN |FP |[O|O | |O
O |O |0k OO |k |O|IN|(Fk OOk |OIN|(FkP[O|WwW Nk |O([w N |k

4.3703680598e-6 9.9856169219¢-6 1.9613503930e-9




