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Notes on the function gsw_CT_from_rho(rho,SA,p)

Notes written 16t April 2011, updated on 20t May 2015

This function, gsw_CT_from_rho(rho,SA,p), calculates the Conservative Temperature ©®
corresponding to the input values of in situ density, rho, Absolute Salinity, SA, and
pressure, p. The function returns NaNs if
(i)  the input density is too small (which would require ® to exceed 40°C), if
(if)  the input density exceeds the density at the temperature of maximum density (as
given by gsw_CT_maxdensity(SA,p)), or if
(i) the temperature is less than the freezing temperature as given by
gsw_CT_freezing poly(SA,p) (implying that we are assuming that at the
freezing temperature, the seawater is air free).

This function, gsw_CT_from_rho(rho,SA,p), uses the 75-term expression, \7(8 A0, p).
This 75-term polynomial expression for specific volume is discussed in Roquert et al.
(2015) and in appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)).
For dynamical oceanography we may take the 75-term polynomial expression for specific
volume as essentially reflecting the full accuracy of TEOS-10.

This function begins by calculating the freezing temperature, CT_freezing, and the
thermal expansion coefficient, gsw_alpha(SA,CT_freezing,p) at this temperature. If this
thermal expansion coefficient is positive and exceeds 1x10° K™, a “modified Newton-
Raphson” iteration procedure of McDougall and Wotherspoon (2014) is performed with
an initial © value given by solving a quadratic in ®, given the thermal expansion
coefficient at the freezing temperature and the value of density at ® = 40°C, as given by
gsw_rho(SA,40,p). This quadratic is based on a Taylor series expression for density,
expanded about the freezing temperature.

If the thermal expansion coefficient at the freezing temperature is less than 1x10° K™
(which occurs only for Absolute Salinities less than approximately 28 g kg™, depending on
pressure),  the  temperature of maximum  density is found = from
gsw_CT_maxdensity(SA,p). Again a simple quadratic for Conservative Temperature is
solved using the density at this value of ® and the density at ® = 40°C. This quadratic
gives two solutions, and if the larger of the two solutions exceeds
gsw_CT_maxdensity(SA,p) by more than 5°C there will be only one non-frozen solution
and we find this solution by the modified Newton-Raphson technique.

If the larger of these two quadratic solutions exceeds gsw_CT_maxdensity(SA,p) by
less than 5°C we avoid using the modified Newton-Raphson method and instead solve
for temperature assuming that the variation of density with ® is a quadratic function of
O about the temperature of maximum density. This is done iteratively, with each iteration
using the previous iteration to effectively estimate pg at the temperature of maximum
density. In this part of the code, care is taken to distinguish cases where there are two
valid solutions, both of which exceed the freezing temperature, from the situation where
this is only one such solution.

When the modified Newton-Raphson method is used, three iterations are performed
after which the density of the solution equals that of the input density to machine
precision (1.6x107* kg m~®). When the iterative quadratic method is used, seven iterations
are performed after which the density of each non-frozen solution equals that of the input
density to machine precision (4.6x10* kg m™).
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This function gsw_CT_from_rho(rho,SA,p) is called as
[CT,CT _multiple] = gsw_CT_from rho(rho,SA,p)

and if there is a valid second solution, it is returned as CT_multiple. When there is only
one solution, CT_multiple is a NaN. When there are no solutions, both CT and
CT_multiple are NaNs.
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Here follows appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)).

A.30 Computationally efficient 75-term expression for the specific volume of
seawater in terms of ®

Ocean models to date have treated their salinity and temperature variables as being
Practical Salinity S, and potential temperature 6. Ocean models that are TEOS-10
compatible need to calculate Absolute Salinity S, and Conservative Temperature ® (as
discussed in appendices A.20 and A.21), and they need a computationally efficient
expression for calculating specific volume (or density) in terms of Absolute Salinity S,,
Conservative Temperature ® and pressure p .

Following the work of McDougall et al. (2003) and Jackett et al. (2006), the TEOS-10
specific volume V has been approximated by a 75-term polynomial by Roquet et al. (2015).
This polynomial is expressed in terms of the following three dimensionless salinity,
temperature and pressure variables,

S, +24gkg™
s = /—AJF 9 T
S,

O ad =P, (A.30.1)
®U pU
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in terms of the unit-related scaling constants
Sa, = 40x35.165049 kg™/35, ©,=40°C and p,=10%dbar. (A.30.2)

Their polynomial expression for the specific volume of seawater is

A

U(S0.0,p) = VD vy S 77", (A.30.3)
i.jk

where v =1 m’kg™ and the non-zero dimensionless constants Vi are given in Table K.1
of appendix K. The specific volume data was fitted in a “funnel” of data points in
(Sa, ©, p) space (McDougall et al. (2003)) which extends to a pressure of 8000 dbar. At
the sea surface the “funnel” covers the full range of temperature and salinity while for
pressures greater than 6500 dbar the maximum temperature of the fitted data is 10°C and
the minimum Absolute Salinity is 30 g kg™ . That is, the fit has been performed over a
region of parameter space which includes water that is approximately 8°C warmer and
59 kg™ fresher in the deep ocean than the seawater which exists in the present ocean.

As outlined in appendix K, this 75-term polynomial expression for Vv yields the
thermal expansion and saline contraction coefficients, a® and ,6’@ , that are essentially as
accurate as those derived from the full TEOS-10 Gibbs function for data in the
“oceanographic funnel”. In dynamical oceanography it is these thermal expansion and
haline contraction coefficients which are the most important aspects of the equation of
state since the “thermal wind” is proportional to a®vp® - ,[)’G)VpS A and the vertical static
stability is given in terms of the buoyancy frequency N by g'N? =a®®, - °(S,), -
Hence for dynamical oceanography we may take Roquet et al.’s (2015) 75-term polynomial
expression for specific volume as essentially reflecting the full accuracy of TEOS-10.

Appendix P describes how an expression for the enthalpy of seawater in terms of
Conservative Temperature, specifically the functional form ﬁ(S A0, p), together with an
expression for entropy in the form ﬁ(S A @) , can be used as an alternative thermodynamic
potential to the Gibbs function g(S,,t, p). The need for the functional form H(S ~:0,p)
also arises in section 3.32 and in Eqns. (3.26.3) and (3.29.1). The 75-term expression, Eqn.
(A.30.3) for v’ = \775(8 .0, p) can be used to find a closed expression for ﬁ(SA,(D, p) by
integrating \775(5 A0, p) with respect to pressure (in Pa), since ﬁp =v=p" (see Eqn.
(2.8.3)).  Specific enthalpy calculated from \775(8 A0, p) is available in the GSW
Oceanographic Toolbox as the function gsw_enthalpy(SA,CT,p). Using gsw_enthalpy to
evaluate H(S a0, p) is 7 times faster than first evaluating the in situ temperature t (from
gsw_t_from_CT(SA,CT,p)) and then calculating enthalpy from the full Gibbs function
expression h(S At p) using gsw_enthalpy_t_exact(SA,t,p). (These last two function calls
have also been combined into the one function, gsw_enthalpy_CT_exact(SA,CT,p).)

Also, the enthalpy difference at the same values of S, and ©® but at different
pressures (see Eqn. (3.32.5)) is available as the function
gsw_enthalpy_diff(SA,CT,p_shallow,p_deep).

Following Young (2010), the difference between h and C%G) is called “dynamic
enthalpy” and can be found using the function gsw_dynamic_enthalpy(SA,CT,p) in the
GSW Oceanographic Toolbox.
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Appendix K: Coefficients of the 75-term expression
or the specific volume of seawater in terms of ®

The TEOS-10 Gibbs function of seawater g(S,t, p) is written as a polynomial in terms of
in situ temperature t, while for ocean models, specific volume (or density) needs to be
expressed as a computationally efficient expression in terms of Conservative Temperature
®. Roquet et al. (2015) have published such a computationally efficient polynomial for
specific volume. Their non-dimensional (root) salinity s, temperature 7, and pressure
7, variables are

S, +24gkg™
sz/&, =2 and =P, (K.1)
SAu ®U pu
in terms of the unit-related scaling constants
Sp, = 40x35.16504g kg ' /35,  ©,=40°C and p, =10"dbar. (K.2)

Their polynomial expression for the specific volume of seawater is
5 i ik
U(S0.0,p) = v, D vy S 77", (K.3)
i.jk
where v, =1 m°kg™ and the non-zero dimensionless constants Vi are given in Table K.1.

Roquet et al. (2015) fitted the TEOS-10 values of specific volume v to S,, ® and p ina
“funnel” of data points in (S,, ®, p) space. This is the same “funnel” of data points as
used in McDougall et al. (2013); at the sea surface it covers the full range of temperature
and salinity while for pressure greater than 6500 dbar, the maximum temperature of the
fitted data is 10°C and the minimum Absolute Salinity is 30 g kg™. The maximum
pressure of the “funnel” is 8000 dbar. Table K.1 contains the 75 coefficients of the
expression (K.3) for specific volume in terms of (S,, ©, p).

The rms error of this 75-term approximation to the full Gibbs function-derived TEOS-
10 specific volume over the “funnel” is 0.2x10~° m*kg™; this can be compared with the rms
uncertainty of 4x10~°m%g™ of the underlying laboratory density data to which the TEOS-
10 Gibbs function was fitted (see the first two rows of Table O.1 of appendix O). Similarly,
the appropriate thermal expansion coefficient,

o _ Lo

_lov) _ _10p
vV 00

, K4
> 26 (K4)

SA/P
of the 75-term equation of state is different from the same thermal expansion coefficient
evaluated from the full Gibbs function-derived TEOS-10 with an rms error in the “funnel”
of 0.03x107® KL this can be compared with the rms error of the thermal expansion
coefficient of the laboratory data to which the Feistel (2008) Gibbs function was fitted of
0.73x10° K™ (see row six of Table O.1 of appendix O). In terms of the evaluation of
density gradients, the haline contraction coefficient evaluated from Eqn. (K.3) is many
times more accurate than the thermal expansion coefficient. Hence we may consider the
75-term polynomial expression for specific volume, Eqn. (K.3), to be equally as accurate as
the full TEOS-10 expressions for specific volume, for the thermal expansion coefficient and
for the saline contraction coefficient for data that reside inside the “oceanographic funnel”.
The sound speed evaluated from the 75-term polynomial of Eqn. (K.3) has an rms
error over the “funnel” of 0.025m s which is a little less than the rms error of the
underlying sound speed data that was incorporated into the Feistel (2008) Gibbs function,
being 0.035 ms™ (see rows 7 to 9 of Table O.1 of appendix O). Hence, especially for the
purposes of dynamical oceanography where a® and 3° are the aspects of the equation of

SA/P



Notes on gsw_CT_from_rho 5

state that, together with spatial gradients of S, and ®, drive ocean currents and affect the
calculation of the buoyancy frequency, we may take the 75-term expression for specific
volume, Eqn. (K.3), as essentially reflecting the full accuracy of TEOS-10.

The wuse of Eqn. (K3) to evaluate \7(SA,®, p) or p(S,,0,p) from
gsw_specvol(SA,CT,p) or gsw_rho(SA,CT,p) is approximately five times faster than first
evaluating the in situ temperature t (from gsw_t_from_CT(SA,CT,p)) and then calculating
in situ specific volume or density from the full Gibbs function expression Vv(Sa,t, p) or
P(Sast,p) via gsw_specvol_t_exact(SAt,p) or gsw_rho_t_exact(SAtp). (These two
function calls have been combined into gsw_specvol CT_exact(SA,CT,P) and
gsw_rho_CT_exact(SA,CT,P).)

Table K.1. Coefficients of the 75-term polynomial of Roquet et al. (2015).

Vijk Vijk Vijk

1.0769995862e-3 -8.0539615540e-7 -5.8484432984e-7

-3.1038981976e-4 -3.3052758900e-7 -4.8122251597¢e-6

6.6928067038e-4 2.0543094268e-7 4.9263106998e-6

-8.5047933937e-4 -6.0799143809¢-5 -1.7811974727e-6

5.8086069943e-4 2.4262468747e-5 -1.1736386731e-6

-2.1092370507e-4 -3.4792460974e-5 -5.5699154557¢e-6

3.1932457305¢e-5 3.7470777305e-5 5.4620748834¢e-6

-1.5649734675e-5 -1.7322218612e-5 -1.3544185627e-6

3.5009599764e-5 3.0927427253e-6 2.1305028740e-6

-4.3592678561e-5 1.8505765429¢e-5 3.9137387080e-7

3.4532461828e-5 -9.5677088156¢e-6 -6.5731104067e-7

-1.1959409788e-5 1.1100834765e-5 -4.6132540037e-7

1.3864594581e-6 -9.8447117844¢e-6 7.7618888092e-9

2.7762106484e-5 2.5909225260e-6 -6.3352916514e-8

-3.7435842344e-5 -1.1716606853e-5 -1.1309361437e-6

3.5907822760e-5 -2.3678308361e-7 3.6310188515e-7

-1.8698584187e-5 2.9283346295e-6 1.6746303780e-8

3.8595339244¢e-6 -4.8826139200e-7 -3.6527006553e-7

-1.6521159259¢-5 7.9279656173e-6 -2.7295696237e-7

2.4141479483e-5 -3.4558773655e-6 2.8695905159e-7

-1.4353633048e-5 3.1655306078e-7 1.0531153080e-7

2.2863324556e-6 -3.4102187482e-6 -1.1147125423e-7

6.9111322702e-6 1.2956717783e-6 3.1454099902e-7

-8.7595873154e-6 5.0736766814e-7 -1.2647261286e-8
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