3.8 Thermobaric coefficient

The thermobaric coefficient quantifies the rate of variation with pressure of the ratio of the
thermal expansion coefficient and the saline contraction coefficient. With respect to
potential temperature @ the thermobaric coefficient is (McDougall (1987b))
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This expression for the thermobaric coefficient is most readily evaluated by differentiating
an expression for density expressed as a function of potential temperature rather than in
situ temperature, that is, with density expressed in the functional form p=p ( Sa. 0, p).
With respect to Conservative Temperature ® the thermobaric coefficient is
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This expression for the thermobaric coefficient is most readily evaluated by differentiating
an expression for density expressed as a function of Conservative Temperature rather than
in situ temperature, that is, with density expressed in the functional form p = P ( Sa. 0, p).

The thermobaric coefficient enters various quantities to do with the path-dependent
nature of neutral trajectories and the ill-defined nature of neutral surfaces (see (3.13.1) —
(3.13.7)). The thermobaric dianeutral advection associated with the lateral mixing of heat
and salt along neutral tangent planes is given by e®=-gN?KT/V,0-V,P or
e =—gN?KT2V,0-V,P where V,# and V,0 are the two-dimensional gradients of
either potential temperature or Conservative Temperature along the neutral tangent
plane, VP is the corresponding epineutral gradient of absolute pressure and K is the
epineutral diffusion coefficient. Note that the thermobaric dianeutral advection is
proportional to the mesoscale eddy flux of “heat” along the neutral tangent plane,
- Cg KV,0, and is independent of the amount of small-scale (dianeutral) turbulent mixing
and hence is also independent of the dissipation of mechanical energy & (Klocker and
McDougall (2010a)). It is shown in appendix A.14 below that while the epineutral
diffusive fluxes —KV, 6 and —KV, @ are different, the product of these fluxes with their
respective thermobaric coefficients is the same, that is, T'V,0 = T°V,0. Hence the
thermobaric dianeutral advection €™ is the same whether it is calculated as
—gN?KTV,0-V,P oras —gN?KT°V,©-V,P. Expressions for T/ and T, in terms of
enthalpy in the functional forms h(S,,0, p) and h(S,,®, p) can be found in appendix P.

Interestingly, for given magnitudes of the epineutral gradients of pressure and
Conservative Temperature, the dianeutral advection, e =-gN?KT°V,©-V P, of
thermobaricity is maximized when these gradients are parallel, while neutral helicity is
maximized when these gradients are perpendicular, since neutral helicity is proportional
to T,”(V,PxV,0®) -k (see Eqn. (3.13.2)).

This thermobaric vertical advection process, e ~, is absent from standard layered
ocean models in which the vertical coordinate is a function only of S, and ® (such as o,
potential density referenced to 2000 dbar). As described in appendix A.27 below, the
isopycnal diffusion of heat and salt in these layered models, caused by both parameterized
diffusion along the coordinate and by eddy-resolved motions, does give rise to the
cabbeling advection through the coordinate surfaces but does not allow the thermobaric
velocity e’ through these surfaces (Klocker and McDougall (2010a)).

In both the SIA and GSW computer software libraries the thermobaric parameter is
output in units of K™ Pa™.
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A.14 Advective and diffusive “heat” fluxes

In section 3.23 and appendices A.8 and A.13 the First Law of Thermodynamics is shown to
be practically equivalent to the conservation equation (A.21.15) for Conservative
Temperature ®. We have emphasized that this means that the advection of “heat” is very
accurately given as the advection of C%@. In this way C?,@ can be regarded as the “heat
content” per unit mass of seawater and the error involved with making this association is
approximately 1% of the error in assuming that either c)# or ¢, (S0, 0dbar)@ is the
“heat content” per unit mass of seawater (see also appendix A.21 for a discussion of this
point).

The conservative form (A.21.15) implies that the turbulent diffusive flux of heat should
be directed down the mean gradient of Conservative Temperature rather than down the
mean gradient of potential temperature. In this appendix we quantify the difference
between these mean temperature gradients.

Consider first the respective temperature gradients along the neutral tangent plane.
From Eqn. (3.11.2) we find that
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so that the epineutral gradients of # and © are related by the ratios of their respective
thermal expansion and saline contraction coefficients, namely
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This proportionality factor between the parallel two-dimensional vectors V 6 and VO is
readily calculated and illustrated graphically. Before doing so we note two other
equivalent expressions for this proportionality factor. A
The epineutral gradients of §, ® and S, are related by (using 6 = 6(S,,0))

Vol = 0o V,0 + 65,V,5,, (A.14.3)
and using the neutral relationship V,S, = (aG/ B° )Vn® we find
V.0 = (é® + [aQ/,Be]éSA)VnQ (A.14.4)

Also, in section 3.13 we found that T,/V 0 = T,°V, 0, so that we can write the equivalent
expressions
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and it can be shown that a®/a’ = é@ and p°/p° = (1+[a®/ﬁ®JHASA/6A®), that is,
Bl=p°+a® ésA / é®. The partial derivatives é® and ésA in the last part of Eqn. (A.14.5)
are both independent of pressure while a®/p° is a function of pressure. This ratio, Eqn.
(A.14.5), of the epineutral gradients of # and © is shown in Figure A.14.1 at p=0,
indicating that the epineutral gradient of potential temperature is sometimes more that 1%
different to that of Conservative Temperature. This ratio |Vn0|/ |Vn®| is only a weak
V,6)/|V.0) (i.e. Eqn. (A.14.5)), is available in the GSW
Oceanographic Toolbox as function gsw_ntp_pt_vs_CT_ratio_CT25.
Similarly to Eqn. (A.14.3), the vertical gradients are related by
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function of pressure. This ratio,

and using the definition, Eqn. (3.15.1), of the stability ratio we find that
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For values of the stability ratio R, close to unity, the ratio 6,/®, is close to the values of
|Vn€|/|Vn®| shown in Figure A.14.1. For other values of R,, Eqn. (A.147) can be
calculated and plotted.
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Figure A.14.1. Contours of (|Vn9| / |Vn®| - 1) x100% at p =0, showing the percentage
difference between the epineutral gradients of # and ®. The blue dots
are from the ocean atlas of Gouretski and Koltermann (2004) at p=0.

As noted in section 3.8 the dianeutral advection of thermobaricity is the same when
quantified in terms of potential temperature as when done in terms of Conservative
Temperature. The same is not true of the dianeutral velocity caused by cabbeling. The ratio
of the cabbeling dianeutral velocity calculated using potential temperature to that using
Conservative Temperature is given by (Cbg V.0 Vnﬂ) 7 (c;? Vn®-Vn®) (see section 3.9) which
can be expressed as
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and this is contoured in Fig. A.14.2. While the ratio of Eqn. (A.14.8) is not exactly unity, it
varies relatively little in the oceanographic range, indicating that the dianeutral advection
due to cabbeling estimated using @ or ® are within half a percent of each otherat p=0.
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Figure A.14.2. Contours of the percentage difference of (Ct‘f7 |Vn9|2 ) / (Cé9 |Vn®|2)
from unity at p =0 dbar.



