A.12 Differential relationships between 7, 8, ® and S,

Evaluating the fundamental thermodynamic relation in the forms (A.11.6) and (A.11.12)
and using the four boxed equations in appendix A.11, we find the relations
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The quantity x(p)dS, is now subtracted from each of these three expressions and the
whole equation is then multiplied by (T,+6)/(T, +t) obtaining
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From this follows all the following partial derivatives between 7, 8, ® and S,,
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The three second order derivatives of ﬁ(SA,@) are listed in Eqns. (P.14) and (P.15) of
appendix P. The corresponding derivatives of §(S,,®), namely 6y, 6s,, 0po, 65,0 and
6s,s, canalso be derived using Eqn. (P.13), obtaining
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in terms of the partial derivatives ©,, C:)SA , 0,4, @ysA and G)SASA which can be obtained
by differentiating the polynomial (:)(S a,0) from the TEOS-10 Gibbs function.

.. and an excerpt from appendix P

The partial derivatives with respect to ® and with respect to @, both at constant Sy
and p, and the partial derivatives with respect to S,, are related by
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Use of these expressions, acting on entropy yields (with p =0 everywhere, and using
Eqn. (P.7) [or Eqn. (A.12.8b)] and Eqn. (P.8))
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in terms of the partial derivatives of the exact polynomial expressions (P.11b) and (P.12).



