A.14 Advective and diffusive “heat” fluxes

In section 3.23 and appendices A.8 and A.13 the First Law of Thermodynamics is shown to
be practically equivalent to the conservation equation (A.21.15) for Conservative
Temperature ®. We have emphasized that this means that the advection of “heat” is very
accurately given as the advection of C%@. In this way Cﬁ@ can be regarded as the “heat
content” per unit mass of seawater and the error involved with making this association is
approximately 1% of the error in assuming that either c)# or ¢, (S0, 0dbar)@ is the
“heat content” per unit mass of seawater (see also appendix A.21 for a discussion of this
point).

The conservative form (A.21.15) implies that the turbulent diffusive flux of heat should
be directed down the mean gradient of Conservative Temperature rather than down the
mean gradient of potential temperature. In this appendix we quantify the difference
between these mean temperature gradients.

Consider first the respective temperature gradients along the neutral tangent plane.
From Eqn. (3.11.2) we find that
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so that the epineutral gradients of # and © are related by the ratios of their respective
thermal expansion and saline contraction coefficients, namely
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This proportionality factor between the parallel two-dimensional vectors V 6 and VO is
readily calculated and illustrated graphically. Before doing so we note two other
equivalent expressions for this proportionality factor. A
The epineutral gradients of 6§, ® and S, are related by (using 6 = 6(S,,0))

Vol = 0o V,0 + 65,V,S,, (A.14.3)
and using the neutral relationship V,S, = (aG/ B° )Vn® we find
V.0 = (é® + [aQ/,Be]éSA)VnQ (A.14.4)

Also, in section 3.13 we found that T,/V 0 = T,°V, 0, so that we can write the equivalent
expressions
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and it can be shown that a®/a’ = é@ and p°/p° = (1 + [a(a/ﬁ@JHASA/HA@), that is,

Bl=p°+a® ésA / é®. The partial derivatives é® and ésA in the last part of Eqn. (A.14.5)

are both independent of pressure while a®/p° is a function of pressure. This ratio, Eqn.

(A.14.5), of the epineutral gradients of # and © is shown in Figure A.14.1 at p=0,

indicating that the epineutral gradient of potential temperature is sometimes more that 1%

different to that of Conservative Temperature. This ratio |Vn0|/ |Vn®| is only a weak

V,6)/|V.0) (i.e. Eqn. (A.14.5)), is available in the GSW
computer software library as function gsw_ntp_pt_to_CT_gradient.

Similarly to Eqn. (A.14.3), the vertical gradients are related by
0, = 050, + 05,5, , (A.14.6)

= O +[a®/p°]6s, (A.14.5)

function of pressure. This ratio,

and using the definition, Eqn. (3.15.1), of the stability ratio we find that
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For values of the stability ratio R, close to unity, the ratio 6,/®, is close to the values of

|Vn€|/|Vn®| shown in Figure A.14.1. For other values of R,, Eqn. (A.147) can be

calculated and plotted.

Sy (k)

Figure A.14.1. Contours of (|Vn€| /IV.0| - l) x100% at p =0, showing the percentage
difference between the epineutral gradients of ¢ and ®. The blue dots
are from the ocean atlas of Gouretski and Koltermann (2004) at p=0.

As noted in section 3.8 the dianeutral advection of thermobaricity is the same when
quantified in terms of potential temperature as when done in terms of Conservative
Temperature. The same is not true of the dianeutral velocity caused by cabbeling. The ratio
of the cabbeling dianeutral velocity calculated using potential temperature to that using
Conservative Temperature is given by (Cg VHH-VHH) 7 (CS) VnG'VnG) (see section 3.9) which
can be expressed as
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and this is contoured in Fig. A.14.2. While the ratio of Eqn. (A.14.8) is not exactly unity, it
varies relatively little in the oceanographic range, indicating that the dianeutral advection
due to cabbeling estimated using @ or ©® are within half a percent of each otherat p=0.
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Figure A.14.2. Contours of the percentage difference of (Cf ‘Vné‘z) / (CE) ‘VnG)‘Z)
from unity at p =0 dbar.



