Notes on the function gsw_enthalpy_diff CT25

Notes written 19 September 2010

From appendix A.30 of the TEOS-10 Manual (IOC et al. (2010)) we have the following
expression for the specific enthalpy of seawater, based on the computationally efficient 25-
term expression for specific volume (McDougall et al. (2010)),
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This has been written in terms of A=b —bf —bb, and B =b, +/bf —byb,, and the
coefficients a,,a;,a,,8; and by,b;,b, and M™ and N* which are all defined in McDougall
et al. (2010) and in the TEOS-10 Manual. All of these coefficients are functions of only
Absolute Salinity and Conservative Temperature; that is, they are independent of
pressure.

The function gsw_enthalpy_diff CT25 returns the difference between the specific
enthalpy of two seawater parcels, both having the same Absolute Salinity and
Conservative Temperature, but having different pressures. The two pressures are labeled
p® and p™ (for “deep” and “shallow” respectively) and the gsw_enthalpy_diff CT25

code returns h? (S A0, pde) — 15 (S A0, pSh) calculated from Eqn. (1) according to
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Below, for reference is section 3.32 and appendix A.30 of the TEOS-10 Manual (IOC et al.
(2010))

3.32 Pressure to height conversion

When vertically integrating the hydrostatic equation P, = —gp in the context of an ocean
model where Absolute Salinity S, and Conservative Temperature ® (or potential
temperature @) are piecewise constant in the vertical, the geopotential (Eqn. (3.24.2))

P
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can be evaluated as a series of exact differences. If there are a series of layers of index i
separated by pressures p' and p'* (with p'™>p') then the integral can be expressed
(making use of (3.7.5), namely hP|sA, o = Mp=V) as asum over n layers of the differences
in specific enthalpy so that
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A.30 Computationally efficient 25-term expressions for the density of seawater
in terms of ® and &

Ocean models to date have treated their salinity and temperature variables as being
Practical Salinity S, and potential temperature 8. As the full implications of TEOS-10 are
incorporated into ocean models they will need to carry Preformed Salinity S. and
Conservative Temperature ® as conservative variables (as discussed in appendices A.20
and A.21), and a computationally efficient expression for density in terms of Absolute
Salinity S, and Conservative Temperature ® will be needed.

Following the work of McDougall et al. (2003) and Jackett et al. (2006), the TEOS-10
density p has been approximated by a rational function of the same form as in those
papers. The fitted expression is the ratio of two polynomials of (S,, ©, p)

p = P> = P/ Phonom (A30.1)
The density data has been fitted in a “funnel” of data points in (S,,t, p) space which is
described in more detail in McDougall et al. (2010b). The “funnel” extends to a pressure of
8000 dbar. At the sea surface the “funnel” covers the full range of temperature and
salinity while for pressures greater than 5500 dbar, the maximum temperature of the fitted
data is 12°C and the minimum Absolute Salinity is Ups30 g kg™ . That is, the fit has been
performed over a region of parameter space which includes water that is approximately
10°C warmer and 59 kg™ fresher in the deep ocean than exists in the present ocean (see
Figure 1 of Jackett et al. (2006)). Table K.1 of appendix K contains the 25 coefficients of the
expression (A.30.1) for density in terms of (S,, ©, p).

As outlined in appendix K, this 25-term rational-function expression for p yields the
thermal expansion and haline contraction coefficients, ® and B°, that are essentially as
accurate as those derived from the full TEOS-10 Gibbs function for data in the
“oceanographic funnel”. The same cannot be claimed for the sound speed derived by
differentiating Eqn. (A.30.1) with respect to pressure; this sound speed has an rms error in
the “funnel” of almost 0.25ms™ whereas TEOS-10 fits the available sound speed data
with an rms error of only 0.035ms™.

In dynamical oceanography it is the thermal expansion and haline contraction
coefficients a® and f° which are the most important aspects of the equation of state
since the “thermal wind” is proportional to aQVp(D - ,8®VpSA and the vertical static
stability is given in terms of the buoyancy frequency N by g'N?=a°0, - °(S,),.
Hence for dynamical oceanography we may take the 25-term rational function expression
for density, Eqn. (A.30.1), as essentially reflecting the full accuracy of TEOS-10. This is
confirmed in Fig. A.30.1 where the error in using the 25-term expression for density to
calculate the isobaric northward density gradient is shown. The vertical axis on this figure
is the magnitude of the difference in the northward isobaric density gradient in the world
ocean below 1000m when evaluated using Eqn. (A.30.1) versus using the full TEOS-10
Gibbs function. The scales of the axes of this figure have been chosen to be the same as
those of Fig. A.5.1 of appendix A.5 so that the smallness of the errors associated with using
the 25-term density expression can be appreciated. The errors represented in Fig. A.30.1
represent perhaps half of the remaining uncertainty in our knowledge of seawater
properties, and by comparing Figs. A.30.1 and A.5.1 it is clear that the much more
important issue is to properly represent the effects of seawater composition on seawater
density. The rms value of the vertical axis in Fig. A.30.1 is 11.4% of that of Fig. A.5.1.

McDougall et al. (2010b) have also provided a 25-term rational-function expression for
density in terms of (Sa, 6, p). The 25 coefficients can be found in Table K.2 of appendix
K. As an approximation to density, this 25-term rational function is approximately as
accurate as the one described above in terms of (S, ©, p). It must be emphasized though



that an ocean model that treated potential temperature as a conservative variable would
make errors in its treatment of heat fluxes, as described in appendices A.13, A.14 and A.17,
and as illustrated in Figures A.13.1, A.14.1 and A.17.1.
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Figure A.30.1. The northward density gradient at constant pressure (the horizontal
axis) for data in the world ocean atlas of Gouretski and Koltermann
(2004) for p >1000 dbar . The vertical axis is the magnitude of the
difference between evaluating the density gradient using the 25-term
expression Eqn. (A.30.1) instead of using the full TEOS-10 expression,
using Absolute Salinity S, as the salinity argument in both cases.

Appendix P describes how an expression for the enthalpy of seawater in terms of
Conservative Temperature, specifically the functional form ﬁ(S a0, p), together with an
expression for entropy in the form 77(S,,©), can be used as an alternative thermodynamic
potential to the Gibbs function g(Sa,t, p). The need for the functional form ﬁ(S 2:0,p)
also arises in section 3.32 and in Eqns. (3.26.3) and (3.29.1). The 25-term expression, Eqn.
(A.30.1), for p*° = p**(SA, 0, p) can be used to find a closed expression for ﬁ(SA,G, p) by
integrating the reciprocal of ,[725(5 A0, p) with respect to pressure (in Pa), since
he =v = p ! (see Eqn. (2.8.3)).

The 25-term expression for specific volume, Eqn. (A.30.1), is first written explicitly as

the ratio of two polynomials in sea pressure p (in dbar ) as
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where the coefficients a; to a; and by to b, are the following functions of S, and ®
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and the numbered coefficients ¢, to C,; are so identified in Table K.1 (note that ¢; =1).

It is not difficult to rearrange Eqn. (A.30.2) into the form
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The pressure integral of the last term in Eqn. (A.30.3) is well known (see for example
section 2.103 of Gradshteyn and Ryzhik (1980)) and is dependent on the sign of the

discriminant of the denominator. In our case it can be shown that b?>byb, over the
domain of the “funnel” and also that both b, and b, are positive, while b, is negative and

(A.30.4)

bounded away from zero. The indefinite integral, with respect to sea pressure measured
in Pa, of the last term in Eqn. (A.30.3) is (with N” =10°N and M" =10"M )
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The enthalpy h*(S,,0, p) is the definite integral of Eqn. (A.30.3) from P, to P, plus cyO,

being the value of enthalpy at By (i. e. at p=0dbar). Hence the full expression for
h?(S,,0,p) is (with A=1b, —\b? —bib, and B = by ++/bZ —lyb, )
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The factor of 10* that appears here and in N” and M’ effectively serves to convert the
units of the integration variable from dbar to Pa so that h? (Sa,©, p) has units of J kg™
In these equations S, isin g kg™, ® in °C and p isin dbar. The arguments of the two
natural logarithms in Eqn. (A.30.6) are always greater than 1, and in fact they are between
1 and 1.2 even for p as large as 10* dbar (note that both b, and A are negative). Also,
when the enthalpy difference at the same values of S, and ® but at different pressures
(see Eqn. (3.32.2)) is evaluated using Eqn. (A.30.6), the expression can also be arranged to
contain only two logarithm terms.

Following Young (2010), the difference between specific enthalpy and Cﬁ@ may be
called “dynamic enthalpy” and can be readily calculated from Eqn. (A.30.6), recognizing
that this equation is based on the computationally efficient 25-term expression for density
of McDougall et al. (2010b) rather than being evaluated from the full TEOS-10 Gibbs
function. Similarly, the partial derivatives of ﬁZS(SA,G, p) with respect to Absolute
Salinity S, and with respect to Conservative Temperature ® can be calculated either by
algebraic differentiation of Eqn. (A.30.6) or by first algebraically differentiating Eqn.
(A.30.1) and then numerically integrating this expression with respect to pressure (this
second procedure is motivated by taking the appropriate S, or © derivatives of Eqn.
(3.2.1); see Eqns. (A.18.4) and (A.18.5)).

An expression h*(S,,0,p) for enthalpy as a function of potential temperature 6 can
be found in a similar manner to that outlined above, but with the coefficients of the 25-
term rational-function expression for density now being taken from Table K.2, and with
the first term being expressed as the exact polynomial expression for h(S,,8, 0) instead of
as C%@.



