2.7 Specific volume

The specific volume of seawater v is given by the pressure derivative of the Gibbs
function at constant Absolute Salinity S, and in situ temperature t, that is

V =V(Sat,p)=0p = 69/8P|SA’T . (2.7.1)

Notice that specific volume is a function of Absolute Salinity S, rather than of Reference
Salinity Si or Practical Salinity S,. The importance of this point is discussed in section
2.8. When derivatives are taken with respect to in situ temperature, or at constant in situ
temperature, the symbol t is avoided as it can be confused with the same symbol for time.
Rather, we use T in place of t in the expressions for these derivatives.

For many theoretical and modeling purposes in oceanography it is convenient to
regard the independent temperature variable to be potential temperature 6 or
Conservative Temperature © rather than in situ temperature t. We note here that the
specific volume is equal to the pressure derivative of specific enthalpy at fixed Absolute
Salinity when any one of 77, @ or © is also held constant, as follows (from appendix A.11)

6h/8P|SA‘”: 8h/6P|SA‘® = 6h/8P|SA’9 =v. (2.7.2)

The use of P in these equations emphasizes that it must be in Pa not dbar. Specific
volume V has units of m*® kg™ in both the SIA and GSW computer libraries.

2.8 Density

The density of seawater p is the reciprocal of the specific volume. It is given by the
reciprocal of the pressure derivative of the Gibbs function at constant Absolute Salinity S,

and in situ temperature t, that is
-1

p =p(Satp) = (gp)" =(ag/6P|SA]T) . 2.8.1)

Notice that density is a function of Absolute Salinity S, rather than of Reference Salinity
Sg or Practical Salinity Sp. This is an extremely important point because Absolute
Salinity S, in units of g kg™ is numerically greater than Practical Salinity by between
0.165 gkg™ and 0.195 gkg™ in the open ocean so that if Practical Salinity were
inadvertently used as the salinity argument for the density algorithm, a significant density
error of between 0.12 kg m™ and 0.15 kg m™® would result.

For many theoretical and modeling purposes in oceanography it is convenient to
regard density to be a function of potential temperature @ or Conservative Temperature
O rather than of in situ temperature t. That is, it is convenient to form the following two
functional forms of density,

P :ﬁ(SA!a’ p) :ﬁ(SA!(—D' p): (2.8.2)

where 6 and © are respectively potential temperature and Conservative Temperature,
both referenced to p, =0 dbar. We will adopt the convention (see Table L.2 in appendix
L) that when enthalpy h, specific volume v or density p are taken to be functions of
potential temperature they attract an over-tilde as in V or p, and when they are taken to
be functions of Conservative Temperature they attract a caret as in V and p. With this
convention, expressions involving partial derivatives such as (2.7.2) can be written more
compactly as (from appendix A.11)

hp=hp=hy =v=p" (2.8.3)
since the other variables are taken to be constant during the partial differentiation.

Appendix P lists expressions for many thermodynamic variables in terms of the
thermodynamic potentials



h=h(Sa7p), h=h(Sa,0,p) and h =h(S,,0, p). (2.8.4)

Density p has units of kg m~ in both the SIA and GSW computer libraries.

Computationally efficient expressions for p(S,,®,p) and p(Sa.6,p) involving 25
coefficients are available (McDougall et al. (2010b)) and are described in appendix A.30
and appendix K. These expressions can be integrated with respect to pressure to provide
closed expressions for h(SA,®, p) and ﬁ(SA,H, p) (see Eqn. (A.30.6)).



