Notes on the first and second order isobaric derivatives of specific enthalpy

Because of the central role of enthalpy in the transport and the conservation of “heat” in
the ocean, the derivatives of specific enthalpy at constant pressure are here derived with
respect to Absolute Salinity and with respect to Conservative Temperature ©.

We begin by noting that the three standard derivatives of h =h(S,,t,p) when in
situ temperaturet is taken as the “temperature-like” variable are
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Now considering specific enthalpy to be a function of entropy (rather than of
temperature t), that is, taking h =h (SA,77, p), the fundamental thermodynamic relation
(Eqn. (A.7.1) of IOC et al. (2010)) becomes
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Now considering spec1f1c enthalpy to be a function of Conservative Temperature
(rather than of temperature t), that is, taking h= h(SA,®, p), the fundamental
thermodynamic relation becomes
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The partial derivative ﬁ follows directly from this equation as
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At p =0 this equation reduces to
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and combining these two equations gives the desired expression for ﬁ® namely
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To evaluate the ﬁsA partial derivative we first write h in the functional form
h =h(Sa,77(Sa,©),p) and then differentiate it, finding (using both parts of Eqn. (5))
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The differential expression Eqn. (6) can be evaluated at p = 0 where the left-hand side is

simply c%d@ so that from Eqn. (6) we find that
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so that the desired expression for ﬁsA is
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The above boxed expressions for two isobaric derivatives of specific enthalpy are
important as they are integral to forming the First Law of Thermodynamics in terms of
Conservative Temperature.
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In order to find the desired expression for hgg we first need an expression for

‘SA,p
6@)/8T|SA ; and 8@/60|SA. These are found by differentiating with respect to in situ
temperature the entropy equality 7(Sa.t,p)=7(Sa,©[Sa.t,p]) obtaining (using the

relation ﬁ®|SA = cg / (T0 +¢9) from Eqn. (8) above)
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and when this is evaluated at p =0 dbar we find
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Differentiating the expression (9) for hg with respect to ® using Eqns. (13) and (14) then
yields
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To obtain the expression for ﬁsA(a we start with the expression (12) for ﬁsA‘ and

differentiate it with respect to © using Eqns. (13) and (14), giving o
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To obtain the expression for HsAsA we again start with the expression (12) for ﬁSA o

and differentiate it with respect to S, at constant ® and p. We will operate differently

on the first and second parts of the right-hand side of Eqn. (12). The first part, namely
Us, (Sa.t, p), will be differentiated using the relation (based on regarding ¢ as

¢(S,1[SA.©,p].p))
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while for the second part of Eqn. (12) we will use the relation (based on regarding ¢ as
¢)(SA1 9[8A1®]1 p))
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From the identity d® = ©g, dS, + ©; dT + ©,dp we find that
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We have Eqn. (13) for 8@/6T|SA , and we can find the expression for 00/3S A|T A by

differentiating with respect to Absolute Salinity the entropy equality



n(Sat.p) = ﬁ(SA,G)[SA,t, p]) obtaining (using the relations ﬁ@)'sA = Cg/(T0+6?) and
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Substituting this into Eqn. (19) we find
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When this is evaluated at p = 0 dbar we find
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Differentiating the two parts of Eqn. (12) differently as described above, and using Eqns.
(17), (18), (21) and (22) leads to the following expression for HSASA
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These first and second order partial derivatives can also be written as pressure
integrals, using the following procedure. First write enthalpy h = ﬁ(S A0, p) in terms of
potential enthalpy, h® = Cg ®, using the definition of potential enthalpy (Eqn. (3.2.1) of
I0C et al. (2010))
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Differentiating this with respect to © gives
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where p, is a constant density of 1035 kg m™. Similarly we have
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The second order partial derivatives can be found in a similar manner as
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