A.10 Proof that 8 = 8(Sp,77) and ©=0(Sp,0)

Consider changes occurring at the sea surface, (specifically at p =0 dbar) where the
temperature is the same as the potential temperature referenced to 0 dbar and the
increment of pressure dp is zero. Regarding specific enthalpy h and chemical potential
4 to be functions of entropy 7 (in place of temperature t), that is, considering the
functional form of h and u tobe h=h(S,,7,p) and u = i(Sa,7, p), it follows from the
fundamental thermodynamic relation (Eqn. (A.7.1)) that

h,(Sa.7.0) d77 +hg (Sx.7,0) dS, = (To+6)dn + 1(Sa.7,0) dS,, (A.10.1)

which shows that specific entropy 7 is simply a function of Absolute Salinity S, and
potential temperature 6, that is 7 = 77(S,,6), with no separate dependence on pressure.
It follows that 6 = 6(S,,77).

Similarly, from the definition of potential enthalpy and Conservative Temperature in
Eqgns. (3.2.1) and (3.3.1), at p =0 dbar it can be seen that the fundamental thermodynamic
relation (A.7.1) implies

¢3dO = (T,+0)dn + i(Sa,6.,0) dS,. (A.10.2)

This shows that Conservative Temperature is also simply a function of Absolute Salinity
and potential temperature, =0(S,,6), with no separate dependence on pressure. It then
follows that ® may also be expressed as a function of only S, and 7. It follows that ©
has the “potential” property.

A.11 Various isobaric derivatives of specific enthalpy

Because of the central role of enthalpy in the transport and the conservation of “heat” in
the ocean, the derivatives of specific enthalpy at constant pressure are here derived with
respect to Absolute Salinity and with respect to the three “temperature-like” variables
n, 0 and O as well as in situ temperature t.

We begin by noting that the three standard derivatives of h =h(S,,t,p) when in
situ temperaturet is taken as the “temperature-like” variable are

o/aSal. ) = #(SatiP) = (To+t) r (Sart P), (A.11.1)

6h/6T|SA’p = ¢, (Sa:tip) = (To+t) 7 (Sart, P), (A.11.2)
and

ah/aF>|SAYT = V(Sa.t,p) = (To+t)v(Sa.t,p). (A.11.3)

Now considering specific enthalpy to be a function of entropy (rather than of
temperature t), that is, taking h =h(S,,7,p), the fundamental thermodynamic relation
(A.7.1) becomes

h,dr + hs,dS, = (To+t)dny + udS, while oh/oP|  =v, (A.11.4)
Sam
so that
aﬁ/an\ —(Ty+t)  and aﬁ/asA\ = 4. (A.11.5)
Sa.p n.p

Now taking specific enthalpy to be a function of potential temperature (rather than of
temperature t), that is, taking h = h(S a0, p), the fundamental thermodynamic relation
(A.7.1) becomes

h,d6 + hs,dS, = (To+t)dy + udS,  while aﬁ/ap\sw =v. (A.11.6)



To evaluate the h, partial derivative, it is first written in terms of the derivative with
respect to entropy as

hg\

Sap ’70|SA h”‘SA,p - 779|SA (To+t), (A.11.7)

where (A.11.5) has been used. This equation can be evaluated at p =0 when it becomes
(the potential temperature used here is referenced to p, =0)

ﬁe‘sA,pzo:Cp(SA’a’o): 779|SA (To+0). (A.11.8)
These two equations are used to arrive at the desired expression for h, namely
hg‘SA,P_ Cp (SA'Q'O) (T0+9)' (A.11.9)

To evaluate the ﬁsA partial derivative, we first write specific enthalpy in the functional
form h =h (SA,n(SA,H), p) and then differentiate it, finding

- _h
0,p Saly,p

+h,|

b, s \9 . (A.11.10)
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The partial derivative of specific entropy 7 = —-g; (Eqn. (2.10.1)) with respect to Absolute
Salinity, 75, =—0s,7, is also equal to -4 since chemical potential is defined by Eqn.
(2.9.6) as u =gs, . Since the partial derivative of entropy with respect to S, in (A.11.10) is
performed at fixed potential temperature (rather than at fixed in situ temperature), this is
equal to —z4 evaluated at p=0. Substituting both parts of (A.11.5) into (A.11.10) we
have the desired expression for HSA namely

1(Sart,p) = (To+t) 4 (Sa. 6,0). (A.11.11)

Sa H,p:

Notice that this expression contains some things that are evaluated at the general pressure
p and one evaluated at the reference pressure p, = 0.
Now considering specific enthalpy to be a function of Conservative Temperature
(rather than of temperature t), that is, taking h= ﬁ(S a0, p), the fundamental
thermodynamic relation (A.7.1) becomes

hed® + hg dS, = (To+t)dy + udS,  while L=V (A.11.12)
A
The partial derivative hg follows directly from this equation as
h ‘ = (To+t)t6]s, , = (To+1)72a)s, - (A.11.13)
At p =0 this equation reduces to
- 0
o, 0= 0 = (T0+9)77®|SA, (A.11.14)

and combining these two equations gives the desired expression for ﬁg namely
_ (To+t) &0
lsap  (Ty+0) ™
To evaluate the AS partial derivative we first write h in the functional form
h= h( 17(Sa.0), ) and then differentiate it, finding (using both parts of Eqn. (A.11.5))
®’p: #(Sart,p) + (To+t) s, ‘@. (A.11.16)
The differential expression Eqn. (A.11.12) can be evaluated at p =0 where the left-hand
side is simply c?,d@) so that from Eqn. (A.11.12) we find that
Sa. 60,0
By, = - #(54,0.0) (A.11.17)
(To+0)

so that the desired expression for ﬁsA is

(A.11.15)

Sa



(To+t)

= u(Sat,p) — = Sa.0,0). A11.18
The above boxed expressions for four different isobaric derivatives of specific enthalpy are
important as they are integral to forming the First Law of Thermodynamics in terms of
potential temperature and in terms of Conservative Temperature.
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