Notes on gsw_z_from_p and on gsw_p_from_z 1

Notes on the GSW code
gsw_z from_p
for calculating height z from pressure p

Height z is measured positive upwards, so it is negative in the ocean. First, note that we
use the following version of specific volume anomaly,

5=0(SA’®! p)—V(SSO,OOC, p)- 1)

That is, the reference Absolute Salinity is the Absolute Salinity of the Standard Ocean,
Seo = 35.16504 g kg ™', and the reference “temperature” is a fixed value of Conservative
Temperature of zero degrees Celsius. Dynamic height anomaly ¥ is then defined by
Eqn. (3.27.1) of IOC et al. (2010) as follows

P
¥ =-[5(p)dP, (2)

o
where By =101 325Pa is the standard atmosphere pressure.

The vertical integral of the hydrostatic equation (P, =-gp or g =-VP,)is (from
Eqn. (3.32.3) of the TEOS-10 Manual (IOC et al. (2010)))

O t—n~

) P
g(z')dz’ = ®° —[v(p)dP" = —[V(Ss,0°C,p') P’ + ¥ + @°
R Ro (3.23.3)

= —(Ss,0°C,p) + ¥ + @°,

Here @° is the geopotential at zero sea pressure on this vertical cast. We use the 76-term
based expression for enthalpy (Eqn. (A.30.6) of the TEOS-10 Manual), recognizing that
because ® =0°C many of the coefficients are zero, so the evaluation of Eqn. (A.30.6) is
less computationally expensive than it may appear. The library function
gsw_enthalpy_SSO_0(p) is used to evaluate h™(Sg,, 0°C,p) efficiently at these fixed
values of Absolute Salinity and Conservative Temperature.

Writing the gravitational acceleration of Eqn. (D.3) of IOC et al. (2010) as

g=09(s2) =9(s0)(1-72), (4)

we see that Eqn. (3.32.3) becomes
h™(Sso, 0°C,p) — ¥ — d>°+g(¢,0)(z—%722) =0. (5)

When the gsw_z_from_p code is called with two arguments, as in gsw_z_from_p(p,lat),
¥+ @0 is ignored in Eqn. (5) and this quadratic expression is solved for the height z.
We do this using the standard quadratic solution equation, but for z*. This is done so
that the result is accurate as pressure tends to zero, and so that the answer also converges
to the correct solution when the quadratic term y tends to zero (since there may be some
applications where it is preferable to assume that the gravitational acceleration is depth-
independent). Hence we evaluate z from the equation
2(W™ (S50, 0°C, p) — ¥ — @°
z = - = . (6)
9(4.0) + /9% (#.0) + 29(4,0)(" (S50, 0°C.p) — ¥ - @° )

Note again that height z is negative in the ocean. When the code is called with three
arguments, the third argument is taken to be dynamic height ¥ and the geopotential at
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zero pressure ®° is taken to be zero. When the code is called with four arguments the
third argument is taken to be ¥ and the fourth ®°. The dynamic height anomaly ¥
can be evaluated using the GSW function gsw_geo_strf_dyn_height, noting that the
reference pressure in the call to this function must be zero sea pressure.

Note that in Eqn. (5) the last term, g(¢,0) (z -1y 22) , can be written as z§ where

g is the mean gravitational acceleration between z =0 and the height concerned.

Recognizing this, the height z output from this algorithm is also equal to

h®(Seq, 0°C,p) — ¥ — @°
z:—( (so _p) ) )

9

Notes on the GSW code

gsw_p_from z
for calculating pressure p from height z

In the gsw_p_from_z code we evaluate pressure p using the modified Newton-Raphson”
iteration procedure of McDougall and Wotherspoon (2014) so that the pressure so
obtained is exactly consistent with the “forward” calculation of z from p via the function
gsw_z_from_p.

When the gsw_p_from_z code is called with two arguments, as in
gsw_p_from_z(z lat), we ignore ¥ + ®° while solving Eqn. (8) below. Note again that
height z is negative in the ocean. When the code is called with three arguments, the
third argument is taken to dynamic height ¥ and the geopotential at zero pressure ®° is
taken to be zero. When the code is called with four arguments the third argument is
taken to be ¥ and the fourth ®°. The dynamic height anomaly ¥ can be evaluated
using the GSW function gsw_geo_strf_dyn_height, noting that the reference pressure in
the call to this function must be zero sea pressure.

A good starting point for pressure is found by using the Saunders (1981) quadratic
expression relating depth to a quadratic of pressure; we solve this quadratic using the
standard quadratic solution formula but for p~! instead of for p, so that the solution is
well-behaved as z goes to zero.

Hence, given z, we have a zeroth estimate of pressure, p,, from the Saunders (1981)
quadratic expression. Now we want to solve (see Eqn. (3.32.3) of the TEOS-10 Manual,
IOC et al. (2010)),

f(p)=0, where f(p)=h"(S5,0°C,p)-¥-d°+g(40)(z-%r7"). ()
The derivative of f (p) is approximately
f'(p) = 10°9"(Ss0,0°C, p), 9)

and this is available from the 75-term polynomial function expression for seawater
specific volume (Roquert et al., 2015) (and since ® = 0°C, V" (Sg,,0°C, p) is particularly
simple to evaluate using the library function gsw_specvol_SSO_0(p)). The factor of 10°*
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in Eqn. (9) is because we want to solve for pressure in dbar rather than in the natural SI
unit for pressure of Pa. That is, Eqn. (9) is the derivative of f(p) with respect to
pressure p in dbar.

After finding p, we evaluate f(p,) = 575(SSO,OOC, Po) — ¥ — @°+ g(4,0) (z —-1y 22) ,

then calculate f'(py) = 10°V™(S55,0°C, py) and use these values of f(p,) and f'(p,)
to form an intermediate pressure estimate p, as (this is a standard Newton’s method

iteration)

Pr =P~ f(Po)/f'(Po) - (8)

Then we form p, =0.5(p,+p;) and evaluate f'(p,) = 10*V"°(Sg,0°C,p,) and use
f(py) and f'(p,) to calculate p, from

P, =Po— f(Po)/T'(Pm) - )

This is one full step of the “modified Newton-Raphson” iteration procedure of
McDougall and Wotherspoon (2014), and this one modified step gives pressure to better
than 1.6x10"° dbar (which is essentially machine precision) down to a height z of
-8000m. The gsw_p_from_z function performs this one full iteration of the modified
Newton-Raphson iteration.
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Below is section 3.32 of the TEOS-10 Manual (IOC et al. (2010)).

3.32 Pressure to height conversion

The vertical integral of the hydrostatic equation (g = —V P, ) can be written as
2 ) p
[g(z)dz = ®° —[v(p)dP' = —[V(Ss,0°C,p') dP' + ¥ + @°
0 R Po (3.32.1)
= —(Ss,0°C,p) + ¥ + @°,
where theA dynamic height anomaly ¥ is expressed in terms of the specific volume
anomaly & =V(S,,0,p) — V(Ss,0°C, p) by
P .
¥=-] 6( p’) dp’, (3.32.2)
P
where P, =101325Pa is the standard atmosphere pressure. Writing the gravitational
acceleration of Eqn. (D.3) as g =9(¢.z) =9(4,0) (1-yz), the left-hand side of Eqn.
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(3.32.1) becomes g(¢,0) (z -1y 22), and using the 75-term expression for the specific
enthalpy of Standard Seawater, Eqn. (3.32.1) becomes
h™(Ss0,0°C,p) =¥ - @° +g(4,0) (z-4y2°) = 0. (3.32.3)

This is the equation that is solved for height z in the GSW function gsw_z_from_p. Itis
traditional to ignore ¥ + ®° when converting between pressure and height, and this can
be done by simply calling this function with only two arguments, as in
gsw_z_from_p(p,lat). Ignoring ¥ + ®° makes a difference to z of up to 4m at 5000
dbar. Note that height z is negative in the ocean. When the code is called with three
arguments, the third argument is taken to be ¥ + ®° and this is used in the solution of
Eqn. (3.32.3). Dynamic height anomaly ¥ can be evaluated using the GSW function
gsw_geo_strf_dyn_height. The GSW function gsw_p_from_z is the exact inverse
function of gsw_z_from_p; these functions yield outputs that are consistent with each
other to machine precision.

When vertically integrating the hydrostatic equation P, = -gp in the context of an
ocean model where Absolute Salinity S, and Conservative Temperature © are
piecewise constant in the vertical, the geopotential (Eqn. (3.24.2))

(D:

O =N

P
g(z')dz’ = ®°- [v(p')dP, (3.32.4)
Ro

can be evaluated as a series of exact differences. If there are a series of layers of index i
separated by pressures p' and p'*! (with p'™>p') then the integral can be expressed
(making use of (3.7.5), namely h he = V) as a sum over n layers of the differences

P|sA,® -
in specific enthalpy so that

P Nnra~;, . P ~p P
® = 0~ [v(p)dP’ = @°- Z[h(S'A,G)',p'“)— h(S'A,G)',p')]. (3.32.5)
P i=1

The difference in enthalpy at two different pressures for given values of S, and © is
available in the GSW Oceanographic Toolbox via the function gsw_enthalpy_diff. The
summation of a series of such differences in enthalpy occurs in the GSW functions to
evaluate two geostrophic streamfunctions from piecewise-constant vertical property
profiles, gsw_geo_strf_dyn_height_pc and gsw_geo_strf_isopycnal_pc.



