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Notes on the GSW code
gsw_z from_p
for calculating height z from pressure p

Height z is measured positive upwards, so it is negative in the ocean. First, note that we
use the following version of specific volume anomaly,

5=0(SA’®! p)—V(SSO,OOC, p)- 1)

That is, the reference Absolute Salinity is the Absolute Salinity of the Standard Ocean,
Seo = 35.16504 g kg™, and the reference “temperature” is a fixed value of Conservative
Temperature of zero degrees Celsius. Dynamic height anomaly ¥ is then defined by
Eqn. (3.27.1) of IOC et al. (2010) as follows

P
¥ =-[5(p)dP, (2)

o
where By =101 325Pa is the standard atmosphere pressure.

The vertical integral of the hydrostatic equation (P, =-gp or g =-VP,)is (from
Eqn. (3.32.3) of the TEOS-10 Manual (IOC et al. (2010)))

O t—n~

) P
g(z')dz’ = ®° —[v(p)dP" = —[V(Ss,0°C,p') P’ + ¥ + @°
R Ro (3.23.3)

= —N(Ss,0°C,p) + ¥ + @°,

Here @° is the geopotential at zero sea pressure on this vertical cast. We use the 75-term
based expression for enthalpy (Roquet et al., 2015), recognizing that because ® =0°C
many of the coefficients are zero, so the evaluation of Eqn. (A.30.6) is less
computationally expensive than it may appear. The library function
gsw_enthalpy_SSO_0(p) is used to evaluate h'™(Sg,,0°C,p) efficiently at these fixed
values of Absolute Salinity and Conservative Temperature.

Writing the gravitational acceleration of Eqn. (D.3) of IOC et al. (2010) as

g=09(s2) =9(s0)(1-72), (4)

we see that Eqn. (3.32.3) becomes
h"(Sg0,0°C,p) =W = @° +g(4,0)(z-3y2) = 0. )

When the gsw_z_from_p code is called with two arguments, as in gsw_z_from_p(p,lat),
¥ + @° is ignored in Eqn. (5) and this quadratic expression is solved for the height z.
We do this using the standard quadratic solution equation, but for z™*. This is done so
that the result is accurate as pressure tends to zero, and so that the answer also converges
to the correct solution when the quadratic term y tends to zero (since there may be some
applications where it is preferable to assume that the gravitational acceleration is depth-
independent). Hence we evaluate z from the equation
2(™ (S0, 0°C, p) =¥ - @° |
7 = - = . (6)
g(4,0) + \/gz(¢,o) + 2yg(¢,0)(h75(850, 0°C,p) - ¥ - q>°)

Note again that height z is negative in the ocean. When the code is called with three
arguments, the third argument is taken to be dynamic height ¥ and the geopotential at
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zero pressure ®° is taken to be zero. When the code is called with four arguments the
third argument is taken to be ¥ and the fourth ®°. The dynamic height anomaly ¥
can be evaluated using the GSW function gsw_geo_strf_dyn_height, noting that the
reference pressure in the call to this function must be zero sea pressure.

Note that in Eqn. (5) the last term, g(¢,0) (Z - % 14 ZZ), can be written as z§ where
g is the mean gravitational acceleration between z =0 and the height concerned.
Recognizing this, the height z output from this algorithm is also equal to

Z =

i (N (S50, 0°C, p) =¥ - @°)
. .

)

Notes on the GSW code

gsw_p_from_ z
for calculating pressure p from height z

In the gsw_p_from_z code we evaluate pressure p using a modified Newton-Raphson
iteration procedure so that the pressure so obtained is exactly consistent with the
“forward” calculation of z from p via the function gsw_z_from_p.

When the gsw_p_from_z code is called with two arguments, as in
gsw_p_from_z(z lat), we ignore ¥ + ®° while solving Eqn. (8) below. Note again that
height z is negative in the ocean. When the code is called with three arguments, the
third argument is taken to dynamic height ¥ and the geopotential at zero pressure ®° is
taken to be zero. When the code is called with four arguments the third argument is
taken to be ¥ and the fourth ®°. The dynamic height anomaly ¥ can be evaluated
using the GSW function gsw_geo_strf_dyn_height, noting that the reference pressure in
the call to this function must be zero sea pressure.

A good starting point for pressure is found by using the Saunders (1981) quadratic
expression relating depth to a quadratic of pressure; we solve this quadratic using the
standard quadratic solution formula but for p~! instead of for p, so that the solution is
well-behaved as z goes to zero.

Hence, given z, we have a zeroth estimate of pressure, p,, from the Saunders (1981)
quadratic expression. Now we want to solve (see Eqn. (3.32.3) of the TEOS-10 Manual,
IOC et al. (2010)),

where,  f(p) = h"®(S50,0°C,p) - ¥ - @° + g(4,0) (- 377°) . (8)
The derivative of f (p) is approximately
f'(p) = 10°9(S55,0°C, p), )

and this is available from the 75-term function expression for seawater specific volume
(and since ® =0°C, V"®(Sg,0°C, p) is particularly simple to evaluate using the library
function gsw_specvol_SSO_0(p)). The factor of 10* in Eqn. (9) is because we want to
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solve for pressure in dbar rather than in the natural SI unit for pressure of Pa. That is,
Eqn. (9) is the derivative of f (p) with respect to pressure p in dbar.

After finding p, we evaluate f(p,) = h™ (Ss0,0°C, pg) = ¥ — @° + g(4,0) (z -1y 22) ,
then calculate f'(py) = 107" (Ss,,0°C, p,) and use these values of f(p,) and f'(p,)
to form an intermediate pressure estimate p, as (this is a standard Newton’s method

iteration)

Pr =P~ f(Po)/f'(Po) - (8)

Then we form p,, =0.5(py+p,) and evaluate f'(p,) =10"0"(Ss,0°C,p,) and use
f(py) and f'(p,) to calculate p, from

P, =Po— f(Po)/T'(Pm) - )

This is one full step of the “modified Newton-Raphson” iteration procedure of
McDougall and Wotherspoon (2014), and this one modified step gives pressure to better
than 1.6x10™"° dbar (which is essentially machine precision) down to a height z of
-8000m. The gsw_p_from_z function performs this one full iteration of the modified
Newton-Raphson iteration.
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Below is section 3.32 of the TEOS-10 Manual (IOC et al. (2010)).

3.32 Pressure to height conversion

The vertical integral of the hydrostatic equation (g = —VP,) can be written as
z P P
jg(z') dz/ = @] v( p’) dP’ = — | O(SSO,OOC, p’) dP’ + ¥ + @°
0 R R (3.32.1)
= — (S84, 0°C,p) + ¥ + @°,
where the dynamic height anomaly ¥ is expressed in terms of the specific volume

anomaly 5= V(SA.0,p) - V(Ss0,0°C, p) by
P .
¥ = - [S(p)dP, (3.32.2)

R
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where P, =101325Pa is the standard atmosphere pressure. Writing the gravitational
acceleration of Eqn. (D.3) as g =0(¢,z) =9(¢,0) (1-yz), the left-hand side of Eqn.
(3.32.1) becomes g(¢,0) (Z -1 Zz), and using the 76-term expression for the specific
enthalpy of Standard Seawater, Eqn. (3.32.1) becomes

h"(Ss0,0°C,p) =W - ®° +g(4,0)(z-4y2") = 0. (3.32.3)

This is the equation that is solved for height z in the GSW function gsw_z_from_p. It is
traditional to ignore ¥ + ®° when converting between pressure and height, and this can
be done by simply calling this function with only two arguments, as in
gsw_z_from_p(p,lat). Ignoring ¥ + ®° makes a difference to z of up to 4m at 5000
dbar. Note that height z is negative in the ocean. When the code is called with three
arguments, the third argument is taken to be ¥ + ®° and this is used in the solution of
Eqn. (3.32.3). Dynamic height anomaly ¥ can be evaluated using the GSW function
gsw_geo_strf_dyn_height. The GSW function gsw_p_from_z is the exact inverse
function of gsw_z_from_p; these functions yield outputs that are consistent with each
other to machine precision.

When vertically integrating the hydrostatic equation P, = —gp in the context of an
ocean model where Absolute Salinity S, and Conservative Temperature © are
piecewise constant in the vertical, the geopotential (Eqn. (3.24.2))

D = fg(z’) dz = ®°- Tv(p’) dP’, (3.32.4)
0 R

can be evaluated as a series of exact differences. If there are a series of layers of index i
separated by pressures p' and p'* (with p'">p') then the integral can be expressed
(making use of (3.7.5), namely hP|sA, o = Mp=V) as a sum over n layers of the differences
in specific enthalpy so that

P o o

® = - [v(p)dP' = @°- i[h(s,;,@',p'*l)— h(s;,@)',p')]. (3.32.5)

P i=1
The difference in enthalpy at two different pressures for given values of S, and © is
available in the GSW Oceanographic Toolbox via the function gsw_enthalpy_diff. The
summation of a series of such differences in enthalpy occurs in the GSW functions to
evaluate two geostrophic streamfunctions from piecewise-constant vertical property
profiles, gsw_geo_strf_dyn_height_pc and gsw_geo_strf_isopycnal_pc.



